Camassa 河边肥沃的低地方程, DegasperisProcesi 方程和 Novikov 方程是承认达到顶点的 solitons 的三个典型 integrable 进化方程。在这份报纸,有立方、二次的非线性的一个概括 Novikov 方程被学习,它被认为是这三个著名学习方程的归纳。这个方程承认单个达到顶点的旅行波浪答案,周期的达到顶点的旅行波浪答案,和多达到顶点的旅行波浪答案,这被显示出。
The Camassa-Holm equation, Degasperis-Procesi equation and Novikov equation are the three typical integrable evolution equations admitting peaked solitons. In this paper, a generalized Novikov equation with cubic and quadratic nonlinearities is studied, which is regarded as a generalization of these three well-known studied equations. It is shown that this equation admits single peaked traveling wave solutions, periodic peaked traveling wave solutions, and multi-peaked traveling wave solutions.