由使用固定的点定理,积极答案的存在为 superlinear semipositone 被认为单个m点边界价值问题--(n)(x)= f ( x ,(x))+ g (x), 0 < x < 1 ,( 0 ) =0 ,( 1 )= m-2i=1 ai (i),吗在哪儿(L)(x)=( p (x)“(x))”+ q (x)(x)和 i ( 0 , 1 )与 0 < 1 < 2 << m-2 < 1 , ai R+, f C [( 0,1 )???嘠???畭瑬杩楲???????牥業整??
By applying fixed point theorem, the existence of positive solution is considered for superlinear semipositone singular m-point boundary value problem -(Lφ)(x)=(p(x)φ′(x))′+q(x)φ(x) and ξi ∈ (0,1)with 0〈ξ1〈ξ2……〈ξm-2〈1,αi ∈ R^+,f ∈C[(0,1)×R^+,R^+],f(x,φ) may be singular at x=0 and x=1,g(x):(0,1)→R is Lebesgue measurable, g may tend to negative infinity and have finitely many singularities.