位置:成果数据库 > 期刊 > 期刊详情页
基于粒子群优化的直觉模糊核聚类算法研究
  • ISSN号:1000-436X
  • 期刊名称:《通信学报》
  • 时间:0
  • 分类:TP182[自动化与计算机技术—控制科学与工程;自动化与计算机技术—控制理论与控制工程] TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]空军工程大学防空反导学院,陕西西安710051
  • 相关基金:国家自然科学基金资助项目(61272011,61309022)
中文摘要:

针对现有基于核方法的直觉模糊聚类算法对初始值敏感、收敛速度慢等缺陷,利用粒子群优化算法全局搜索能力强、收敛速度快的优势,对直觉模糊核聚类算法的初始聚类中心进行优化,并提出了一种基于粒子群优化的直觉模糊核聚类算法。该算法在提升聚类性能的同时,有效增强了算法的收敛速度。在实验阶段,采用4组标准数据集对该算法进行了分类实验及有效性测试,并将其与模糊c均值聚类算法及直觉模糊c均值聚类算法的分类效果及运行时间进行对比,实验结果充分表明了该算法的有效性及优越性。

英文摘要:

The intuitionistic fuzzy kernel e-means clustering algorithm has several problems such as sensitivity to the ini- tial value, low convergence speed, etc. To overcome these shortages, the particle swarm optimization (PSO) algorithm with powerful ability of global search and quick convergence rate is applied to intuitionistic fuzzy clustering. Firstly, PSO is used to optimize the initial clustering centers. Then, the approach of intuitionistic fuzzy kernel clustering based on PSO, namely PS-IFKCM, is proposed. This algorithm can enhance both the clustering ability and the convergence speed. Fi- nally, experiments based on four measured datasets are carried out to illustrate the performance of the proposed method. Compared with results from FCM and IFKCM, PS-IFKCM is of great efficiency for classification.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《通信学报》
  • 中国科技核心期刊
  • 主管单位:中国科学技术协会
  • 主办单位:中国通信学会
  • 主编:杨义先
  • 地址:北京市丰台区成寿寺4路11号邮电出版大厦8层
  • 邮编:100078
  • 邮箱:
  • 电话:010-81055478 81055481
  • 国际标准刊号:ISSN:1000-436X
  • 国内统一刊号:ISSN:11-2102/TN
  • 邮发代号:2-676
  • 获奖情况:
  • 信息产业部通信科技期刊优秀期刊二等奖
  • 国内外数据库收录:
  • 荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:25019