利用直链淀粉与甘/丙氨酸乙酯共取代聚膦腈交联,制得了一种具有网络结构的新型杂化材料.实验结果表明,淀粉衍生物上的羟基转变为醇钠后,可与聚膦腈分子链上的P~Cl键发生亲核取代反应;所得聚合物膜无明显相分离,力学性能优于具有相似组成的直链淀粉/聚膦腈共混膜,表面亲水性和吸水率与对应的共混膜接近,且均高于纯聚膦腈膜.因此,该聚合物可作为杂化生物材料用于药物控制释放和组织工程方面的研究.
A kind of novel hybrid material was prepared by crosslinking poly [ (glycino ethyl ester)0. 6 (alanino ethyl ester)1.2 (chororide)0.2 phosphazene ] (PAGP1) with amylose. The results show that the residual P-Cl groups in PAGP1 can be nucleophilic substituted by hydroxyl groups of amylose in the form of R-ONa. The obtained hybrid polymeric film exhibited no obvious phase separation, which commonly occurred in polymer blends. The crosslinked hybrid material had better mechanical properties than the blended PAGPE/amylose with similar composition, and was more hydrophilic than pure PAGP2. This novel material would be a good candidate to be applied for drug-controlled release and tissue engineering applications.