为了分析地震后建筑物毁伤程度,构建了一种结合灾前高分辨率光学影像和灾后高分辨率SAR特性的评估方法。首先,通过震前高分辨率光学影像提取矩形建筑物的位置和长、宽、高等三维信息;然后,通过GPU加速的方式对建筑物进行雷达影像模拟;最后,通过计算仿真sAR影像与震后灾区雷达真实影像的相似性,判断建筑物是否毁伤。选取2008年四川汶川5·12地震时的超高分辨率遥感影像,对算法进行了验证,实验证实了算法的可行性与有效性。
A damage assessment method is proposed by using pre-event very-high resolution(VHR) optical and post-event synthetic aperture radar(SAR) images to detect buildings damaged in an earthquake. First, the length, width, height and other 3-D parameters of a rectangular building are extracted using a pre-event VHR optical image. Second, an image-based GPU ray-tracing approach is used to simulate SAR images. Third, the similarity between the simulated SAR images and post-event actual SAR images is analyzed to determine thief the building is damaged. We demonstrate the feasibility and effectiveness of the method by using remote sens- ing images of the Sichuan Wenchuan Earthquake of May 12, 2008.