In this paper, we report a high-performance P3HT/PCBM bulk-heterojunction solar cell with a power conversion efficiency of 4.85% fabricated by adjusting the polymer crystallinity and nanoscale phase separation using an ultrasonic irradiation mixing approach for the polymer. The grazing incidence X-ray diffraction, UV/Vis spectroscopic, and atomic force microscopic measurement results for the P3HT/PCBM blend films reveal that the P3HT/PCBM film fabricated by ultrasonic irradiation mixing of the P3HT and PCBM solutions for 10 min has a higher degree of crystallinity, a higher absorption efficiency, and better phase separation, which together account for the higher charge transport properties and photovoltaic cell performance.
In this paper, we report a high-perfornmnce P3HT/PCBM bulk-heterojunction solar cell with a power conversion efficiency of 4.85% fabricated by adjusting the polymer crystallinity and nanoscale phase separation using an ultrasonic irradiation mixing approach for the polymer. The grazing incidence X-ray diffraction, UV/Vis spectroscopic, and atomic force microscopic measurement results for the P3HT/PCBM blend films reveal that the P3HT/PCBM film fabricated by ultrasonic irradiation mixing of the P3HT and PCBM solutions for 10 min has a higher degree of crystallinity, a higher absorption efficiency, and better phase separation, which together account for the higher charge transport properties and photovoltaic cell performance.