位置:成果数据库 > 期刊 > 期刊详情页
张量典型相关分析
  • 期刊名称:上海交通大学学报,Vol.42,No.7,1124-1128,2008
  • 时间:0
  • 分类:TP391.4[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]上海交通大学电子信息与电气工程学院,上海200240, [2]上海交通大学空天科学技术研究院,上海200240
  • 相关基金:国家自然科学基金资助项目(60705006,60502042),上海市科技启明星项目(06QA14003)
  • 相关项目:基于真彩色传递理论的自然彩色夜视方法研究
中文摘要:

针对典型相关分析用于图像特征融合时,不仅消耗大量时间,且常常产生协方差阵奇异的问题,提出了一种快速算法.该算法将图像看作张量空间R^M×R^N中的二阶张量,建立方差和协方差,根据准则函数进行相关投影分析,将图像矩阵投影到2个向量空间的张量积空间.图像识别实验结果表明,该算法不仅提高了计算效率,而且能取得更高的识别率.

英文摘要:

In order to decrease the computational time and avoid the singularity of covariance matrix when canonical correlation analysis is used for feature fusion of images, a fast algorithm was proposed. The algorithm considers an image as the second order tensor in R^M×R^N. It is based on two-dimensional image matrices rather than vectors. So, variance and covariance can be constructed using the image matrices by building corresponding criterion function. After getting the projection matrices, it can project the image matrices onto a space which is the tensor product of two vector spaces. The relationship between the row vectors of the image matrix and that between column vectors can be naturally characterized by the proposed algorithm. The experiments suggest that the proposed algorithm can not only improve the computational efficiency greatly but also achieve much higher recognition accuracies.

同期刊论文项目
同项目期刊论文