位置:成果数据库 > 期刊 > 期刊详情页
基于带补偿字典的松弛稀疏表示的小样本人脸识别
  • ISSN号:1003-6059
  • 期刊名称:《模式识别与人工智能》
  • 时间:0
  • 分类:TP301.6[自动化与计算机技术—计算机系统结构;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]北京大学信息科学技术学院智能科学系,北京100871, [2]北京大学机器感知与智能教育部重点实验室,北京100871
  • 相关基金:国家重点基础研究发展计划(973计划)项目(No.2011CB302400)、国家自然科学基金项目(No.61333015)资助
中文摘要:

在训练集类内变化类型不可控的小样本人脸识别问题中,补偿字典很难发挥足够作用.在基于带补偿字典的稀疏表示的人脸识别方法中,训练集字典和补偿字典对测试图片表示的能力不同,文中讨论因此不同而导致的二者在稀疏性上的不同要求,通过对两类字典采用不同的稀疏性约束,提出基于带补偿字典的松弛稀疏表示的人脸识别方法.实验表明,在训练集图片类内变化类型不可控的小样本人脸识别问题中,文中方法能取得较优效果.

英文摘要:

In the undersampled face recognition problem with uncontrolled intra-class variations, the auxiliary dictionary can not work quite well. The training dictionary and the auxiliary dictionary in the sparse representation face recognition methods have different representation abilities for the query image. Thus, different demands on the sparsity constraints of these dictionaries at representation stage are discussed. In this paper, a loose sparse representation based classification with auxiliary dictionaries (LSRCAD) is proposed by using different constraints on two types of dictionary respectively. The experiments confirm the effectiveness and the robustness of LSRCAD. LSRCAD outperforms the original sparse representation face recognition methods with auxiliary dictionaries for undersampled face recognition problems.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《模式识别与人工智能》
  • 中国科技核心期刊
  • 主管单位:中国科学技术协会 中国自动化学会
  • 主办单位:国家智能计算机研究开发中心 中国科学院合肥智能机械研究所
  • 主编:郑南宁
  • 地址:安徽省合肥市蜀山湖路350号中国科学院合肥智能机械研究所
  • 邮编:230031
  • 邮箱:bjb@iim.cas.cn
  • 电话:0551-5591176
  • 国际标准刊号:ISSN:1003-6059
  • 国内统一刊号:ISSN:34-1089/TP
  • 邮发代号:26-69
  • 获奖情况:
  • 国内外数据库收录:
  • 被引量:10169