位置:成果数据库 > 期刊 > 期刊详情页
CVS中基于多参考帧的最优多假设预测算法
  • ISSN号:1000-565X
  • 期刊名称:《华南理工大学学报:自然科学版》
  • 时间:0
  • 分类:TN919.8[电子电信—通信与信息系统;电子电信—信息与通信工程]
  • 作者机构:华南理工大学电子与信息学院,广东广州510640
  • 相关基金:国家自然科学基金资助项目(61471173)
中文摘要:

现有的视频压缩感知(CVS)多假设预测方法均以当前块在参考帧对应搜索范围内的所有搜索块为假设块,造成求解线性权值系数的计算复杂度过高和预测精度受限.针对该问题,文中提出了一种基于多参考帧的最优多假设预测视频压缩感知重构算法.该算法首先从多个参考帧中选取出与当前块测量域绝对差值和(SAD)最小的一部分搜索块作为当前块的最优假设块集,然后对假设块进行自适应线性加权,充分地挖掘视频帧间相关信息,提升了预测精度,同时降低了求解线性权值系数的计算复杂度;最后对测量值进行帧间DPCM量化,以提高视频压缩效率和率失真性能.仿真实验表明,与现有的视频压缩感知重构算法相比,文中算法具有更高的视频重构质量.

英文摘要:

The existing multi-hypothesis prediction methods for compressed video sensing ( CVS) select all possible blocks within the search space of reference frames as the hypotheses, which causes a high computation load in sol-ving linear weighting coefficients and impairs prediction accuracy.To address this issue, a multi-reference frames-based optimal multi-hypothesis prediction algorithm for CVS reconstruction is proposed in this paper.In the algo-rithm, first, those search blocks which have the smallest sum of absolute differences ( SAD) from current block in measurement domain are selected from multi-reference frames as the optimal hypotheses of current block.Then, the hypotheses are weighted both linearly and adaptively to fully excavate the temporal correlation between video frames.Thus, the prediction accuracy is improved and the computation load in solving linear weighting coefficients is reduced.Finally, the compressed sensing measurements are quantized through the frame-based DPCM quantiza-tion to improve video compression efficiency and rate-distortion performance.Simulation results show that, in com-parison with the existing CVS reconstruction algorithms, the proposed algorithm achieves higher video reconstruction quality.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《华南理工大学学报:自然科学版》
  • 北大核心期刊(2011版)
  • 主管单位:国家教育部科技司
  • 主办单位:华南理工大学
  • 主编:李元元
  • 地址:广州市天河区五山路华南理工大学17号楼
  • 邮编:510640
  • 邮箱:journal@scut.edu.cn
  • 电话:
  • 国际标准刊号:ISSN:1000-565X
  • 国内统一刊号:ISSN:44-1251/T
  • 邮发代号:46-174
  • 获奖情况:
  • 本学报荣获1996年国家教委系统优秀科技期刊二等奖...,1999年荣获全国优秀高校自然科学学报及教育部优秀...,2001年荣获广东省优秀期刊奖和广东省优秀科技期刊...,2004年获全国高校优秀科技期刊二等奖,2006年获首届教育部优秀科技期刊奖,2008年荣获第二届教育部优秀科技期刊奖
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,英国科学文摘数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:22954