欢迎您!
东篱公司
退出
申报数据库
申报指南
立项数据库
成果数据库
期刊论文
会议论文
著 作
专 利
项目获奖数据库
位置:
成果数据库
>
期刊
> 期刊详情页
Analysis of the Radiative Decays Among the Charmonium States
ISSN号:0020-7748
期刊名称:International Journal of Theoretical Physics
时间:2012.5.5
页码:1518-1528
相关项目:应用QCD求和规则研究核物质中强子性质
作者:
Wang, Zhi-Gang|
同期刊论文项目
应用QCD求和规则研究核物质中强子性质
期刊论文 30
同项目期刊论文
Analysis of the Nonet Scalar Mesons as Tetraquark States with New QCD Sum Rules
ANALYSIS OF THE Y (4274) WITH QCD SUM RULES
Analysis of the Light-Flavor Scalar and Axial-Vector Diquark States with QCD Sum Rules
Analysis of Mass Difference of the pi and rho with Bethe-Salpeter Equation
Bc衰变 Bc(+)到J/psi pi(+)pi(-)pi(+), eta(c)pi(+)pi(-)pi(+)
用QCD求和规则分析核物质中双重重子
用QCD求和规则分析核物质中西格玛重重子
Analysis of Vector Meson Transitions Among Heavy Quarkonium States
Analysis of the Lambda(Q) baryons in the nuclear matter with the QCD sum rules
In-medium mass modifications of the D-0 and B-0 mesons from QCD sum rules
Analysis of the scalar and axial-vector heavy diquark states with QCD sum rules
Analysis of strong decays of the charmed mesons D(2550), D(2600), D(2750), and D(2760)
ANALYSIS OF THE B -> K-2(*)(1430), a(2)(1320), f(2)(1270) FORM-FACTORS WITH LIGHT-CONE QCD SUM RULES
分析粲介子 D-J(2580), D-J*(2650), D-J(2740), D-J*(2760), D-J(3000), D-J*(3000)的强衰变
Next-to-leading order perturbative contributions in the qcd sum rules for mesonic two-point correlat
用QCD求和规则分析重赝介子的衰变常数
用QCD求和规则分析矢量Bc介子的辐射衰变
用QCD求和规则分析重夸克偶素h(c) 和h(b)
用QCD求和规则分析核物质中矢量和轴矢重介子的质量修正
Analysis of the Triply Heavy Baryon States with QCD Sum Rules
分析美夸克偶素的辐射衰变
Analysis of the X(1835) and related baryonium states with Bethe-Salpeter equation
Analysis of Scalar Doubly Heavy Tetraquark States with QCD Sum Rules
Analysis of the 1/2(-) and 3/2(-) heavy and doubly heavy baryon states with QCD sum rules
Analysis of the vertexes Omega*(Q)Omega*(Q)phi, Omega*(Q)*K-Q*, *(Q)Sigma*K-Q* and Sigma*(Q)Sigma*(Q
有机电致发光器件各层厚度对色坐标的影响
B→A transitions in the light-cone QCD sum rules with the chiral current
Semileptonic Decays B*→ηclυl with QCD Sum Rules
Analysis of the decays psi ' -> J/psi pi(+)pi(-) and eta '(c) -> eta(c)pi(+)pi(-) with the hea