欢迎您!
东篱公司
退出
申报数据库
申报指南
立项数据库
成果数据库
期刊论文
会议论文
著 作
专 利
项目获奖数据库
位置:
成果数据库
>
期刊
> 期刊详情页
On the non-resistive limit of the 2D Maxwell–Navier–Stokes equations
期刊名称:Journal of Mathematical Analysis and Applications
时间:2013
页码:150-160
相关项目:流体动力学方程中若干问题的研究
作者:
Qian Zhang|
同期刊论文项目
流体动力学方程中若干问题的研究
期刊论文 16
同项目期刊论文
Local existence of solutions for an aggregation equation in Besov spaces
On the global well-posedness for the 2D Euler-Boussinesq system
On the well-posedness for a multi-dimensional compressible viscous liquid–gas two-phase flow model i
Regularity criteria of the 3D Boussinesq equations in the Morrey-Campanato space
Global well-posedness of the aggregation equation with supercritical dissipation in Besov spaces
Refined blow-up criterion for the 3D magnetohydrodynamics equations
可压缩向列型液晶流体的适定性
Well-posedness forthe density-dependent incompressible flow of liquid crystals
GLOBAL WELL-POSEDNESS FOR THE 2-D BOUSSINESQ SYSTEM WITH TEMPERATURE-DEPENDENT THERMAL DIFFUSIVITY
Global well-posedness for the 2D fluid system with the linear Soret effect and Yudovich’s type data
On the ill-posedness of thecompressible Navier-Stokes equations in the critical Besov spaces