位置:成果数据库 > 期刊 > 期刊详情页
基于两对互相垂直平行线的自定标方法
  • 期刊名称:光子学报,2009.1, 38(1):233-236.
  • 时间:0
  • 分类:TP391.41[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]陕西师范大学计算机科学学院,西安710062
  • 相关基金:国家自然科学基金项目(60805016);高等学校博士学科点专项科研基金新教师基金课题(200807181007);陕西省科技计划项目(2011JM8014);中国博士后科学基金特别资助(200902594);陕西师范大学中央高校基本科研业务费专项资金(GK201002016);大学生创新性实验计划项目(1110718026)
  • 相关项目:基于视频序列的三维人体结构及运动重建技术研究
中文摘要:

SIFT(Scale Invariant Feature Transform)是目前最流行的局部特征提取及匹配算法.但传统SIFT算法采用欧氏距离来度量特征之间的SSD(Sumo f Square Differences)并进行匹配,而传统的欧氏距离不能使高维特征向量恢复到具有低维的几何结构,导致错误匹配.为了克服这缺点,利用扩散距离代替欧氏距离进行匹配,然后使用随机抽样一致从候选匹配中排除错误的匹配.实验表明:该方法在图像形变、光照变化和图像噪声方面优于原方法.

英文摘要:

The SIFT(Scale Invariant Feature Transform) algorithm is now regarded as the best local feature extraction and matching algorithm. However, in the traditional SIFT algorithm, the Euclidean distance which could not change the high-dimensional feature vector into a low-dimensional geometry structure is used to measure the SSD(Sum of Square Differences) between two image features to match and results into mismatching. To overcome the shortcoming, an SIFT matching algorithm based on diffusion distance is proposed in this paper which replaces the Euclidean distance with the diffusion one. At the same time, RANSAC(Random Sample Consensus) is presented to exclude the mismatching points. Experimental results show that the proposed algorithm has more efficiency to deal with image deformation, illumination chan~e and image noise than the traditional one.

同期刊论文项目
同项目期刊论文