位置:成果数据库 > 期刊 > 期刊详情页
基于多视角特征组合与随机森林的G蛋白偶联受体与药物相互作用预测
  • ISSN号:1005-9830
  • 期刊名称:《南京理工大学学报:自然科学版》
  • 时间:0
  • 分类:TP391.4[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]上海交通大学图像处理与模式识别研究所,上海200240, [2]南京理工大学计算机科学与工程学院,江苏南京210094, [3]系统控制与信息处理教育部重点实验室,上海200240
  • 相关基金:国家自然科学基金(61373062)
中文摘要:

为提高跨膜蛋白两亲螺旋区域(Amphipathic helices,AHs)预测的精度,基于蛋白质位置特异性得分矩阵、二级结构以及疏水矩,提出了一种新的衡量两亲性的螺旋周期性(Helix periodicity,HP)特征;利用Mem Brain预测器滤除跨膜区域片段并使用下采样的方法,降低了AHs的搜索空间;在此基础上训练基于支持向量机(Support vector machine,SVM)的集成分类器用于AHs预测。为了客观评价AHs的预测性能,首次构建了领域内较为完备可用的标准数据集。在此数据集上的实验结果表明所提方法优于其他AHs预测方法。

英文摘要:

In order to improve the prediction accuracy of amphipathic helices ( AHs ), this paper develops a novel helix periodicity(HP) feature based on the position specific scoring matrix (PSSM), protein secondary structure and hydrophobic moment. MemBrain predictor is utilized to cut off the transmembrane segments;under-sampling and classifier ensemble are applied to cope with class imbalance. This paper implementes an ensembled support vector machine (SVM) classifier for performing AHs prediction. To objectively evaluate the prediction performance of AHs, a relative large benchmark data set regarding AHs prediction is constructed. Rigorous experimental tests demonstrate that the proposed method outperforms the existing AHs predictors on benchmark dataset.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《南京理工大学学报:自然科学版》
  • 北大核心期刊(2011版)
  • 主管单位:工业和信息化部
  • 主办单位:南京理工大学
  • 主编:廖文和
  • 地址:南京孝陵卫200号
  • 邮编:210094
  • 邮箱:zrxuebao@njust.edu.cn
  • 电话:025-84315600
  • 国际标准刊号:ISSN:1005-9830
  • 国内统一刊号:ISSN:32-1397/N
  • 邮发代号:
  • 获奖情况:
  • 1997年荣获原国家科委、中共中央宣传部、国家新闻...,2002年荣获首届江苏省期刊方阵"优秀期刊"称号,2004年获教育部"优秀编辑出版质量奖",2006年获教育部颁发的"首届中国高校优秀科技期刊奖",2008年度获教育部颁发的"第2届中国高校优秀科技期...,2009年上海市新闻出版局“第四届华东地区优秀期刊”奖,2010年工业和信息化部“编辑质量优秀”奖,2010年教育部“第三届
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),波兰哥白尼索引,荷兰文摘与引文数据库,美国乌利希期刊指南,英国科学文摘数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:9051