位置:成果数据库 > 期刊 > 期刊详情页
纳滤膜对脂肪族及杂环有机物的截留特性
  • ISSN号:1000-6923
  • 期刊名称:《中国环境科学》
  • 时间:0
  • 分类:TU991.2[建筑科学—市政工程]
  • 作者机构:[1]清华大学环境科学与工程系,北京100084
  • 相关基金:国家自然科学基金资助项目(50238020)
中文摘要:

分别选用NF90、NF270和NF-型号的纳滤膜测定了20种脂肪族及杂环有机物的截留率(R),并分析了纳滤膜截留效果的影响因素.结果表明,脂肪族及杂环有机物的R受到分子结构和膜特性的影响:对于同分异构体,分枝结构越多,R越高;环状有机物与分子量相近的直链有机物相比,R明显偏高;孔径越小的纳滤膜R越高.利用遗传算法(GA)结合偏最小二乘回归(PLS)和人工神经网络法(ANN)建立了脂肪族及杂环物质的R与其结构的定量关系模型、2种方法建立的模型相关系数可分别达到0.8809和0.9944,通过2种模型进一步分析了R的影响规律,并对几种物质的R进行了有效的预测.从预测结果来看,GA-ANN模型的预测精度要好于GA-PLS模型.

英文摘要:

Nanofiltration membrane NF90, NF270 and NF- modes were selected separately to determine the rejection rates of 20 kinds of aliphatic and heterocyclic organism (AHO); and the influence factors of nanofiltration rejection effect were analyzed. The rejection rates of AHO were influenced by the molecular structures and characteristics of membranes. On the isomers, the more the branch structures, the higher the rejection rates; the cyclic organism compared with the straight chain organism of similar molecular weights, the rejection rates were higher obviously; the smaller the pore radius of the membrane, the higher the rejection rate. The quantitative structure-property relationships (QSPR) model with the rejection rate of AHO was established, utilizing least square regression (PLS) and artificial neural networks (ANN) combined with genetic algorithm (GA); the correlation coefficients of model established by these two techniques could reach 0.8809 and 0.9944 respectively. Through these two models, the influence rule of the rejection rates was further analyzed and the rejection rates of certain AHO were predicted effectively. According to the predicted results, the precision in predicting by GA-ANN model was better than that by GA-PLS.

同期刊论文项目
期刊论文 130 会议论文 22 著作 1
同项目期刊论文
期刊信息
  • 《中国环境科学》
  • 中国科技核心期刊
  • 主管单位:中国科协
  • 主办单位:中国环境科学学会
  • 主编:王文兴
  • 地址:北京市海淀区红联南村54号
  • 邮编:100082
  • 邮箱:zghjkx1981@126.com
  • 电话:010-62215145
  • 国际标准刊号:ISSN:1000-6923
  • 国内统一刊号:ISSN:11-2201/X
  • 邮发代号:2-572
  • 获奖情况:
  • 国家期刊提名奖,国家“双效”期刊,第三届中国科协优秀科技期刊一等奖
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),英国农业与生物科学研究中心文摘,波兰哥白尼索引,荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,英国科学文摘数据库,英国动物学记录,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:47702