位置:成果数据库 > 期刊 > 期刊详情页
基于网络距离和内容相似度的微博社交网络社区划分方法
  • ISSN号:1671-9352
  • 期刊名称:《山东大学学报:理学版》
  • 时间:0
  • 分类:TP311[自动化与计算机技术—计算机软件与理论;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]周口师范学院计算机科学与技术学院,河南周口466001, [2]农产品质量安全追溯技术河南省工程实验室,河南周口466001, [3]大连理工大学计算机科学与技术学院,辽宁大连116024, [4]郑州大学互联网医疗与健康服务河南省协同创新中心,河南郑州450000, [5]郑州大学产业技术研究院,河南郑州450000
  • 相关基金:国家自然科学基金资助项目(U1504602);河南省教育厅科学技术研究资助项目(148520014);河南省科技厅科技计划资助项目(162102310590);河南省高等学校重点科研资助项目(16A520106);教育教学改革项目资助(J2016037)
中文摘要:

现有的微博社交网络社区挖掘方法多是基于网络结构进行,忽略了节点本身行为的重要性,并且不能同时实现对大规模复杂网络结构适应性和社区挖掘的高效性。为缓解上述问题,提出了一种基于网络距离和内容相似度的微博社交网络社区划分方法,该方法在考虑微博社交网络结构的同时兼顾了网络中节点的历史微博内容,通过对历史微博数据的分析提高社区划分的精确度。文中对Louvain算法和其模块性的修改使用,保证了该方法能够处理大规模网络数据,同时又能保证社区挖掘的效率。实验证明,该方法能够高效地挖掘微博网络社区结构,对学术研究和商业应用都有十分重要的意义。

英文摘要:

Existing micro-blog social network community mining methods are based on the network structure, ignoring the importance of node's behavior, and can not guarantee the adaptability on large-scale complex network structure and the efficiency of community mining. To alleviate these problems, a new method ABDC is proposed for the community network of micro-blog based on the network distance and content similarity, the method considers the structure of the social network of micro-blog at the same time taking into account the historical blog content of the node in the network, improved the accuracy of community division through analysis the historical micro-blog data, In this paper, the Louvain algorithm and its modularity are modified and used to ensure that the method can deal with large scale network data, and get high efficiency of community mining. Experiments show that the method can efficiently mine the community structure of micro-blog network, which has great significance for academic research and business applications.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《山东大学学报:理学版》
  • 北大核心期刊(2011版)
  • 主管单位:中华人民共和国教育部
  • 主办单位:山东大学
  • 主编:刘建亚
  • 地址:济南市经十路17923号
  • 邮编:250061
  • 邮箱:xblxb@sdu.edu.cn
  • 电话:0531-88396917
  • 国际标准刊号:ISSN:1671-9352
  • 国内统一刊号:ISSN:37-1389/N
  • 邮发代号:24-222
  • 获奖情况:
  • 国内外数据库收录:
  • 美国化学文摘(网络版),美国数学评论(网络版),波兰哥白尼索引,德国数学文摘,中国中国科技核心期刊,中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),英国英国皇家化学学会文摘
  • 被引量:6243