位置:成果数据库 > 期刊 > 期刊详情页
Effects of CO2 enrichment and spikelet removal on rice quality under open-air field conditions
  • ISSN号:1000-0933
  • 期刊名称:《生态学报》
  • 时间:0
  • 分类:S511[农业科学—作物学] S511.01[农业科学—作物学]
  • 作者机构:[1]Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, P.R.China, [2]College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225009, P.R.China, [3]State Key Laboratory of Soil and Sustainable Agriculture/Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, P.R.China
  • 相关基金:funded jointly by the National Natural Science Foundation of China(31171460,31371563,31571597,31471437,31261140364); the Major Fundamental Research Program of Natural Science Foundation of Jiangsu Higher Education Institutions,China(11KJA210003); the Jiangsu Planned Projects for Postdoctoral Research Funds,China(1501077C); the China Postdoctoral Science Foundation(2015M581870); the Priority Academic Program Development of Jiangsu Higher Education Institutions,China
中文摘要:

The increase of atmospheric carbon dioxide(CO2) concentration adversely affect several quality traits of rice grains, but the biochemical mechanism remains unclear. The objectives of this study were to determine how changes in the source-sink relationship affected rice quality. Source-sink manipulation was achieved by free-air CO2 enrichment from tillering to maturity and partial removal of spikelet at anthesis using a japonica rice cultivar Wuyunjing 23. Enrichment with CO2 decreased the head rice percentage and protein concentration of milled rice, but increased the grain chalkiness. In contrast, spikelet removal resulted in a dramatic increase in the head rice percentage and protein concentration, and much less grain chalkiness. Neither CO2 enrichment nor spikelet removal affected the starch content, but the distribution of starch granule size showed distinct treatment effects. O n average, spikelet removal decreased the percentage of starch granules of diameter >10 and 5–10 μm by 23.6 and 5.6%, respectively, and increased those with a diameter of 2–5 and <2 μm by 4.6 and 3.3%, respectively. In contrast, CO2 elevation showed an opposite response: increasing the proportion of large starch granules(>5 μm) and decreasing that of <5 μm. The starch pasting properties were affected by spikelet removal much more than by CO2 elevation. These results indicated that the protein concentration and starch granule size played a role in chalkiness formation under these experimental conditions.

英文摘要:

The increase of atmospheric carbon dioxide(CO_2) concentration adversely affect several quality traits of rice grains, but the biochemical mechanism remains unclear. The objectives of this study were to determine how changes in the source-sink relationship affected rice quality. Source-sink manipulation was achieved by free-air CO_2 enrichment from tillering to maturity and partial removal of spikelet at anthesis using a japonica rice cultivar Wuyunjing 23. Enrichment with CO_2 decreased the head rice percentage and protein concentration of milled rice, but increased the grain chalkiness. In contrast, spikelet removal resulted in a dramatic increase in the head rice percentage and protein concentration, and much less grain chalkiness. Neither CO_2 enrichment nor spikelet removal affected the starch content, but the distribution of starch granule size showed distinct treatment effects. O n average, spikelet removal decreased the percentage of starch granules of diameter 〉10 and 5–10 μm by 23.6 and 5.6%, respectively, and increased those with a diameter of 2–5 and 〈2 μm by 4.6 and 3.3%, respectively. In contrast, CO_2 elevation showed an opposite response: increasing the proportion of large starch granules(〉5 μm) and decreasing that of 〈5 μm. The starch pasting properties were affected by spikelet removal much more than by CO_2 elevation. These results indicated that the protein concentration and starch granule size played a role in chalkiness formation under these experimental conditions.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《生态学报》
  • 中国科技核心期刊
  • 主管单位:中国科学技术协会
  • 主办单位:中国生态学会 中国科学院生态环境研究中心
  • 主编:傅伯杰
  • 地址:北京海淀区双清路18号
  • 邮编:100085
  • 邮箱:shengtaixuebao@rcees.ac.cn
  • 电话:010-62941099 62843362
  • 国际标准刊号:ISSN:1000-0933
  • 国内统一刊号:ISSN:11-2031/Q
  • 邮发代号:82-7
  • 获奖情况:
  • 1998年获国家科委信息中心“国内科技期刊影响因子...,2000年环境期刊第三名,2000年中科院优秀科技期刊一等奖
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),荷兰地学数据库,荷兰文摘与引文数据库,美国剑桥科学文摘,英国动物学记录,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:117518