遥感图像配准是遥感图像应用的一个重要处理步骤.随着遥感图像数据规模与遥感图像配准算法计算复杂度的增大,遥感图像配准面临着处理速度的挑战.最近几年,GPU计算能力得到极大提升,面向通用计算领域得到了快速发展.结合GPU面向通用计算领域的优势与遥感图像配准面临的处理速度问题,研究了GPU加速处理遥感图像配准的算法.选取计算量大计算精度高的基于互信息小波分解配准算法进行GPU并行设计,提出了GPU并行设计模型;同时选取GPU程序常用面向存储级的优化策略应用于遥感图像配准GPU程序,并利用CUDA(compute unified device architecture)编程语言在nVIDIA Tesla M2050GPU上进行了实验.实验结果表明,提出的并行设计模型与面向存储级的优化策略能够很好地适用于遥感图像配准领域,最大加速比达到了19.9倍.研究表明GPU通用计算技术在遥感图像处理领域具有广阔的应用前景.
遥感图像配准是遥感图像应用的一个重要处理步骤.随着遥感图像数据规模与遥感图像配准算法计算复杂度的增大,遥感图像配准面临着处理速度的挑战.最近几年,GPU计算能力得到极大提升,面向通用计算领域得到了快速发展.结合GPU面向通用计算领域的优势与遥感图像配准面临的处理速度问题,研究了GPU加速处理遥感图像配准的算法.选取计算量大计算精度高的基于互信息小波分解配准算法进行GPU并行设计,提出了GPU并行设计模型;同时选取GPU程序常用面向存储级的优化策略应用于遥感图像配准GPU程序,并利用CUDA(compute unified device architecture)编程语言在nVIDIA Tesla M2050GPU上进行了实验.实验结果表明,提出的并行设计模型与面向存储级的优化策略能够很好地适用于遥感图像配准领域,最大加速比达到了19.9倍.研究表明GPU通用计算技术在遥感图像处理领域具有广阔的应用前景.