利用全矢量有限元法研究了一种混合导引型光子晶体光纤在纤芯折射率改变时,光纤导光机理和模式的演变特性.当纤芯折射率小于混合包层中空气孔包层的有效折射率时,芯模的导光机理为"双带隙导引型";当纤芯折射率位于空气孔和高折射率两套包层的有效折射率之间时,芯模的导光机理为"单带隙+全内反射导引型";当纤芯折射率大于高折射率棒包层的有效折射率时,芯模的导光机理为"全内反射导引型".并对该光纤在上述三种条件下的导光特性进行了比较和讨论.这些结果对设计特殊用途的光子晶体光纤具有指导意义.
The properties of light guiding mechanism and modes relating to the core refractive index in a hybrid photonic crystal fiber (PCF) are numerically investigated by the full-vectorial finite element method. The light guiding mechanism of core mode is the double-bandgap-guiding when the core refractive index is smaller than the effective index of the air-hole cladding in the hybrid-PCF. If the core refractive index is between the refractive indexes of the two kinds of hybrid-claddings,there is a co-operative action of the index-guiding and the bandgap-guiding on the guide mode in the core. Only the total internal reflection guiding occurs in the fiber when the core refractive index is greater than the effective index of the high-index rod cladding. Comparison of these guiding properties in the hybrid-PCF are also carried out. The results provide guidance for the design of hybrid photonic crystal fiber for special purposes.