为了提高水声通信系统的通信速率,同时更好地解决能量供应问题,提出了一种水声中继放大转发通信系统资源分配方案.该系统的声呐中继配备无线充电设备,利用从基站获取到的能量时分复用地放大转发来自基站的信号.采用拉格朗日优化算法,从信道遍历和容量上界最大的角度出发,推导出一种充电时隙资源以及水下各个传感器通信时隙资源的最次优分配方案.对不同信道、不同发射功率以及不同通信距离的水声通信系统进行仿真对比,结果表明,所提出的分配策略比传统策略显著提高了系统可达遍历和容量上界,从而提高了系统吞吐量以及系统的工作效率.
To improve the communication rate of the underwater acoustic communication systems and solve the power supply problems better,a resource allocation scheme for underwater acoustic relay amplification and forward communication system was proposed. The sonar relay of the system was equipped with wireless charging device,obtaining energy from the base station to amplify and forward the signal from the base station by time-division-multiple-access. A near optimal time slot resource allocation strategy was deduced for charging and the communications between each sensor under water by using the Lagrange optimization algorithm to maximize the boundary of channel ergodic sum-throughput. The simulation focused on different channels,transmit powers and communication distances,respectively. The results showthat compared with conventional allocation strategies,the proposed allocation strategy can improve the boundary of the channel ergodic sum-throughput,thus improving the throughput and the efficiency of the system.