位置:成果数据库 > 期刊 > 期刊详情页
基于改进粒子滤波的目标跟踪算法
  • ISSN号:1673-9965
  • 期刊名称:《西安工业大学学报》
  • 时间:0
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]西北工业大学自动化学院,西安710072
  • 相关基金:国家自然科学基金(60802084)
中文摘要:

针对传统的粒子滤波采用系统转移概率作为建议分布,不能利用当前观测信息.提出了一种结合集合卡尔曼滤波的粒子滤波跟踪方法.对每个粒子产生一个采样子集,使用集合卡尔曼滤波结合当前的观测信息构造建议分布,依据新的建议分布对粒子进行采样.同时在跟踪过程中对于遮挡现象给出了判断和解决方法.实验结果证明该方法提高了粒子滤波估计的准确性,相对于传统粒子滤波和其他粒子滤波方法有更好的稳定性.

英文摘要:

The conventional particle filter uses system transition as the proposal distribution. In order to improve the performance of particle filters for target tracking, a sub-set of each particle is first sampled and then the Ensemble kalman filter is proposed to construct proposal distribution. If the target is occluded, the method based on similarity of the sub-block is used to judge occlusion and keep tracking. Experimental results show that the proposed algorithm improves the stability of object tracking and increases the estimation accuracy.

同期刊论文项目
期刊论文 40 会议论文 3 专利 7
同项目期刊论文
期刊信息
  • 《西安工业大学学报》
  • 中国科技核心期刊
  • 主管单位:陕西省教育厅
  • 主办单位:西安工业大学
  • 主编:雷亚萍
  • 地址:西安市未央大学园区学府中路2号
  • 邮编:710021
  • 邮箱:
  • 电话:029-86173236
  • 国际标准刊号:ISSN:1673-9965
  • 国内统一刊号:ISSN:61-1458/N
  • 邮发代号:52-261
  • 获奖情况:
  • 陕西省教委、省新闻出版局优秀期刊,教育部优秀高校学报
  • 国内外数据库收录:
  • 美国化学文摘(网络版),波兰哥白尼索引,美国乌利希期刊指南,中国中国科技核心期刊
  • 被引量:2140