位置:成果数据库 > 期刊 > 期刊详情页
非自伴Dirac算子的迹公式
  • ISSN号:2095-2651
  • 期刊名称:《数学研究及应用:英文版》
  • 时间:0
  • 分类:O175.9[理学—数学;理学—基础数学]
  • 作者机构:[1]北京应用物理与计算数学研究所,北京100088
  • 相关基金:基金项目:国家973项目(2005CB321700).
作者: 胡晓燕[1]
中文摘要:

本文研究了非自伴Dirac算子的一般两点边值问题的渐近迹,首先运用平移算子得到了其Cauchy问题解的渐近式,并由此及边界条件,构造了整函数ω(λ),利用它将边界条件分为八种基本类型,最后采用留数的方法,得到了四种主要类型的特征值的渐近迹公式。

英文摘要:

This paper deals with asymptotic trace of non-self-adjoint Dirac operator eigenvalue problem with two points linear boundary condition. The asymptotic eatimations of solution of Cauchy problem are obtained for Dirac equation by use of the transformation matrix operator. By constructing an entire function ω(λ), and discussing every term's coefficient of ω(λ), boundary conditions are turned into eight element types. By resorting the residue method, four types eigenvalue's trace identities are obtained.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《数学研究及应用:英文版》
  • 中国科技核心期刊
  • 主管单位:国家教育部
  • 主办单位:大连理工大学
  • 主编:王仁宏
  • 地址:大连理工大学应用数学系
  • 邮编:116024
  • 邮箱:
  • 电话:0411-84707392
  • 国际标准刊号:ISSN:2095-2651
  • 国内统一刊号:ISSN:21-1579/O1
  • 邮发代号:8-92
  • 获奖情况:
  • 1998年大连市优秀期刊奖,2000年大连市优秀期刊奖
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国数学评论(网络版),德国数学文摘,日本日本科学技术振兴机构数据库,中国中国科技核心期刊
  • 被引量:36