对拟连续DomainD证明了:(1)双拓扑空间(D,σ(D),(D))为两两完全正则空间;(2)若D有可数基,则(max(D),σ(D)|max(D))为正则空间当且仅当它为Polish空间;(3)拓扑空间(D,σ(D))为零维Tychonoff空间,其中σb(D)为D上Scott拓扑的b-拓扑。
For a quasicontinuous domain D, we prove that (1) the bitopology space (D,σ(D),ω(D)) is pairwise completely regular, (2) for an ω-quasicontinuous domain D, the maximal points max (D) in its Scott topology inherited from D is regular if and only if it is a Polish space, and (3) the space (D,σb(D)) is zero-dimensional Tychonoff, where σb(D) is the b-topology for the Scott topology on D.