位置:成果数据库 > 期刊 > 期刊详情页
基于卷积神经网络的SAR图像目标检测算法
  • ISSN号:1009-5896
  • 期刊名称:《电子与信息学报》
  • 时间:0
  • 分类:TN957.51[电子电信—信号与信息处理;电子电信—信息与通信工程]
  • 作者机构:[1]西安电子科技大学雷达信号处理国家重点实验室,西安710071, [2]西安电子科技大学信息感知技术协同创新中心,西安710071
  • 相关基金:国家自然科学基金(61271024,61322103,61525105),高等学校博士学科点专项科研基金博导类基金(20130203110013),陕西省自然科学基金(2015JZ016)
中文摘要:

该文研究了训练样本不足的情况下利用卷积神经网络(Convolutional Neural Network, CNN)对合成孔径雷达(SAR)图像实现目标检测的问题。利用已有的完备数据集来辅助场景复杂且训练样本不足的数据集进行检测。首先用已有的完备数据集训练得到CNN分类模型,用于对候选区域提取网络和目标检测网络做参数初始化;然后利用完备数据集对训练数据集做扩充;最后通过“四步训练法”得到候选区域提取模型和目标检测模型。实测数据的实验结果证明,所提方法在SAR图像目标检测中可以获得较好的检测效果。

英文摘要:

This paper studies the issue of SAR target detection with CNN when the training samples are insufficient. The existing complete dataset is employed to assist accomplishing target detection task, where the training samples are not enough and the scene is complicated. Firstly, the existing complete dataset with image-level annotations is used to pre-train a CNN classification model, which is utilized to initialize the region proposal network and detection network. Then, the training dataset is enlarged with the existing complete dataset. Finally, the region proposal model and detection model are obtained through the pragmatic “4-step training algorithm” with the augmented training dataset. The experimental results on the measured data demonstrate that the proposed method can improve the detection performance compared with the traditional detection methods.

同期刊论文项目
期刊论文 11
期刊论文 16
同项目期刊论文
期刊信息
  • 《电子与信息学报》
  • 中国科技核心期刊
  • 主管单位:中国科学院
  • 主办单位:中国科学院电子学研究所 国家自然科学基金委员会信息科学部
  • 主编:朱敏慧
  • 地址:北京市北四环西路19号
  • 邮编:100190
  • 邮箱:jeit@mail.ie.ac.cn
  • 电话:010-58887066
  • 国际标准刊号:ISSN:1009-5896
  • 国内统一刊号:ISSN:11-4494/TN
  • 邮发代号:2-179
  • 获奖情况:
  • 国内外数据库收录:
  • 荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版)
  • 被引量:24739