设X为拓扑空间,H1和H2为Hilbert空间,T(-)为X到B(H1,H2)的连续映射。本文主要利用Tikhonov正则化算子给出了Moore-Penrose逆Tx^+连续的充分必要条件,这个结果在计算数学中是很重要的。
Let X be a topological space. Let H1 and H2 be two Hilbert spaces and T(-) be a continuous mapping from X into B(H1 , H2 ). In this paper, using the Tickhonov regularizer, we give a sufficient and necessary condition for the Moore-Penrose inverses Tx^+ being continuous, which plays an important role in the computation.