位置:成果数据库 > 期刊 > 期刊详情页
新疆天山山区TRMM卫星降水数据的复合校正方法
  • ISSN号:1001-4675
  • 期刊名称:《干旱区研究》
  • 时间:0
  • 分类:P427.3[天文地球—大气科学及气象学]
  • 作者机构:[1]荒漠与绿洲生态国家重点实验室,中国科学院新疆生态与地理研究所,新疆乌鲁木齐830011, [2]中国科学院大学,北京100101, [3]河海大学水文水资源与水利工程科学国家重点实验室,江苏南京210098, [4]河海大学地球科学与工程学院,江苏南京210098
  • 相关基金:国家自然基金面上项目(41371051); 中国科学院重点部署课题(KZZD-EW-12-1)资助
中文摘要:

在新疆天山山区,利用重建时间序列后的NDVI和DEM数据,基于人工神经网络对TRMM3B43月降水数据进行了校正。并采用研究区25个站点实测降水数据对仅考虑地理因子校正后的TRMM值与同时考虑地理因子和NDVI进行校正后的TRMM值分别进行精度检验,结果表明:仅考虑地理因子校正后的TRMM数据的校正效果明显,同时考虑地理因子与NDVI进行校正后的TRMM数据效果更好,R2显著提高,δ和RMSE明显降低。对于单个站点而言,仅考虑地理因子校正后的TRMM数据和综合考虑地理因子和NDVI校正后的TRMM数据精度大部分有所提高,个别站点与实测值之间有一定差异,降水量相对较小的站点差异较明显。

英文摘要:

Based on the NDVI and DEM data after reconstructing the time series,in this study the artificial neural network approach was used to mainlY revise the TRMM31343 monthly precipitation data in the Tianshan Mountains. The precipitation data from 25 meteorological stations in the study area were used to test the accuracy of adjusted TRMM values under only considering the geographical factors and taking into account both the geographical factors and NDVI. The results showed that the correction effect of TRMM data was significant under only considering the correction of geographical factors, and the results of TRMM data were more significant when both the geographical factors and NDVI were taken into account, the R2 was increased significantly, and the 8 and RMSE were decreased obviously. For single stations, the accuracy of the corrected results of most stations was increased under both the two methods except some differences between the corrected TRMM data and the observed data at several stations, and such differences were relatively low at the stations with low precipitation.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《干旱区研究》
  • 中国科技核心期刊
  • 主管单位:中国科学院
  • 主办单位:科学院新疆生态与地理研究所
  • 主编:李彦
  • 地址:乌鲁木齐北京南路818号
  • 邮编:830011
  • 邮箱:azr@ms.xjb.ac.cn
  • 电话:0991-7885364
  • 国际标准刊号:ISSN:1001-4675
  • 国内统一刊号:ISSN:65-1095/X
  • 邮发代号:58-37
  • 获奖情况:
  • 2006-2007年度荣获新疆维吾尔自治区优秀科技期刊...
  • 国内外数据库收录:
  • 英国农业与生物科学研究中心文摘,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版)
  • 被引量:16862