基于高阶的间断有限元方法,数值模拟低马赫数下并列圆柱的可压缩层流流动,捕捉并列圆柱流场中的漩涡结构,以便分析并列圆柱尾流的流动特性.针对二维圆柱的边界形式,采用曲边三角形单元构造二维圆柱的曲面边界,以适应高阶离散格式的精度.在验证方法合理性的基础上,分析圆柱间距及雷诺数对漩涡脱落及受力特性的影响规律.研究结果表明:并列圆柱的间距是影响流场流动特性的一个主要因素,它会改变圆柱漩涡脱落的形式.随着圆柱间距的增加,上下圆柱的平均阻力系数及平均升力系数的绝对值随之显著下降.雷诺数对于平均阻力系数的影响相对较小.但随着雷诺数的增加,上下圆柱的平均升力系数会随之降低,而漩涡的脱落频率会随之增大.
Investigations of vortex dynamics about two circular cylinders in a side-by-side arrangement help the understanding of flows around more complex structures, which are found to have many engineering applications. These applications involve offshore structures, power generation, micro-turbine engines, cooling towers, and paper machine forming fabrics,etc. Therefore, two-dimensional compressible laminar flows over two cylinders in side-by-side arrangement are numerically investigated at low Reynolds number. The high-order discontinuous Galerkin method is employed to simulate the flow,which combines the advantages associated with finite element and finite volume methods. As in classical finite element method, the spatial accuracy can be obtained by the high-order polynomial approximation within an element rather than by stencils as in finite volume method. The curved triangle is used to represent the wall boundary of cylinder to maintain the high-order accurate simulation. Then the characteristics of the wake flow are identified by capturing the vortex structure. After verifying the rationality of the method, the influences of gap spacing on vortex shedding and mechanical characteristics are analyzed. The results reveal that the flow depends to a large extent on the gap spacing between the two cylinders, which can change the vortex shedding pattern. At the gap spacing S*= 1.1, wake flow pattern resembles the vortex street of a single bluff body. The flow in the gap is too weak to affect the wake pattern,leading to the complete suppression of vortices shed on the gap sides of both cylinders. At the gap spacing S*= 1.4,the results reveal that the gap flow is deflected from one cylinder to another. Meanwhile, the wakes represent randomly flip-flopping between two states of the gap flow direction, which is called the flip-flopping wake pattern. The flow is no longer periodic but becomes drastically unsteady. Anti-symmetric flow pattern is predicted for gap spacing S*= 2.5,indicating that two parallel vortex streets