站内搜索是继web搜索后的另一重要的领域.由于基于文本的查询面临着许多困难,而且传统的链接分析技术并不能很好地工作于站内搜索,研究适于站内搜索的链接分析方法以提高站内查询质量是非常重要的.本文提出一种站内层次链接分析算法.在充分挖掘站点结构与站内搜索特点的基础上,为站内的每条链接合理地分配推荐性权重以计算站内页面的重要性,依此重新对文本查询的结果排序以提高查询质量.实验结果表明,相对于文本查询及Google站内搜索,此站内层次链接分析算法能充分提高查询的精度.
Website search is another increasingly important area after web search. Because ranking by content-based similarity faces many difficulties and link analysis technologies could not be directly applied to website search, there are many search work on website link analysis to enhance the query precision in website. This paper present a website level link analysis algorithm, the algorithm fully excavates the structure of the website and the characteristic of website search, and then re-ranks the results of the full text search . It proved that the website level link analysis algorithm works very well for the website search compare to full text search and domain-restricted Google search.