利用高斯二平方和定理求解一个特殊的丢番图方程1/x^2+1/y^2=1/z^2+1/w^2,将其转化为a^2+b^2=c^2+d^2.经讨论得知,a^2+b^2≡c^2+d^2≡1,2(mod 4),当(k1-k3)(k1+k3-1)≡(k4+k2)(k4-k2)时,a^2+b^2≡c^2+d^2≡1(mod4);当(k1-k3)(k1+k3-1)≡(k4-k2)(k4+k2-1)≡0.2(mod 4)时,a^2+b^2≡c^2+d^2≡2(mod 4).
In this article,the sum of two squares and Gauss theorem is used to solve a particular diophantus equation 1/x^2+1/y^2=1/z^2+1/w^2.1/x^2+1/y^2=1/z^2+1/w^2 will be converted to a^2 +b^2 =c^2 +d^2.After discussion,a^2+b^2≡c^2+d^2≡1,2(mod 4).We say that a^2+b^2=c^2+d^2=1(mod 4) if and only if(k1-k3)(k1+k3-1)≡(k4+k2)(k4-k2)O(mod4);we say that a^2 +b^2≡c^2 +d^2≡2(mod 4) if and only if(k1-k3)(k1 +k3- 1)≡(k4-k2)(k4+k2-1)≡0,2(mod 4).