位置:成果数据库 > 期刊 > 期刊详情页
面向数据流的多粒度时变分形维数计算
  • ISSN号:1000-9825
  • 期刊名称:《软件学报》
  • 时间:0
  • 分类:TP311[自动化与计算机技术—计算机软件与理论;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]合肥工业大学管理学院,安徽合肥230009, [2]教育部过程优化与智能决策重点实验室(合肥工业大学),安徽合肥230009, [3]安徽农业大学信息与计算机学院,安徽合肥230036
  • 相关基金:国家自然科学基金(71271071,71301041);国家高技术研究发展计划(863)(201IAA040501) 致谢在此,作者衷心感谢审稿人的批评和指导.
中文摘要:

在大数据时代,数据流是一种常见的数据模型,具有有序、海量、时变等特点.分形是许多复杂系统的重要特征,分形维数是度量系统分形特征的重要指标量.数据流作为动态的复杂系统,其上的分形维数应具有动态、时变、多粒度等特性.提出了多粒度时变分形维数的概念,并设计了基于小波变换技术的数据流多粒度时变分形维数算法.该算法通过对数据流进行离散小波变换,并利用多粒度小波变换树结构在内存中保存数据流的概要信息,可以同时在不同的时间粒度上实时地计算数据流时变分形维数.该方法具有较低的计算复杂度,实验结果表明:该方法可以有效地监控数据流分形维数在不同粒度上的时变特征,深刻地揭示数据流的演化规律.

英文摘要:

In the era of big data, data stream is a common data model with characteristics such as orderly, massive and time-varying. Fractal is an important feature of many complex systems, and is mainly represented by fractal dimension. Data stream can be viewed as a dynamic and complex system, and its fractal dimension should also have characteristics of dynamic, time-varying and multi-granularity. This paper presents a method of measuring multi-granularity and time-varying fractal dimension on a data stream based on discrete wavelet transform. The method can simultaneously measure the time-varying fractal dimension on a data stream by using the summary information from wavelet transforming of the data stream saved in a multi-granularity wavelet transforming tree in memory. This method has low computational complexity, and effectively reveals the evolution of a data stream. Experimental results show that it can effectively monitor the time-varying characteristic of fractal dimension on a data stream at different granularity.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《软件学报》
  • 北大核心期刊(2011版)
  • 主管单位:中国科学院
  • 主办单位:中国科学院软件研究所 中国计算机学会
  • 主编:赵琛
  • 地址:北京8718信箱中国科学院软件研究所
  • 邮编:100190
  • 邮箱:jos@iscas.ac.cn
  • 电话:010-62562563
  • 国际标准刊号:ISSN:1000-9825
  • 国内统一刊号:ISSN:11-2560/TP
  • 邮发代号:82-367
  • 获奖情况:
  • 2001年入选中国期刊方阵“双百期刊”,2000年荣获中国科学院优秀科技期刊一等奖
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国数学评论(网络版),波兰哥白尼索引,德国数学文摘,荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:54609