位置:成果数据库 > 期刊 > 期刊详情页
基于参数型指数混合熵模型的农业遥感分类不确定性评价
  • ISSN号:1002-6819
  • 期刊名称:农业工程学报
  • 时间:2013.3.15
  • 页码:177-184
  • 分类:P208[天文地球—地图制图学与地理信息工程;天文地球—测绘科学与技术] S127[农业科学—农业基础科学]
  • 作者机构:[1]中北大学电子测试技术国家重点实验室,太原030051, [2]中国农业科学院农业资源与农业区划研究所,北京100081, [3]农业部农业信息技术重点实验室,北京100081
  • 相关基金:国家重大科技专项(E0201/1112);国家自然科学基金项目(41171328)
  • 相关项目:基于交叉信息熵理论的我国东北地区农作物空间分布研究
中文摘要:

针对对像元尺度上独立于分类方法的不确定性评价的需要和对数混合熵函数在评价遥感影像分类不确定性中存在的不足,该文提出了一种基于参数型指数混合熵模型的农业遥感影像分类不确定性评价方法。研究首先对指数混合熵函数进行改进,推导出参数型指数混合熵函数并确定出适合于评价农作区遥感影像分类的参数;然后,使用该函数建立一种像元尺度上独立于分类的不确定性评价模型;最后,将该模型应用于空间分辨率退化10倍的SPOT-5影像中,并使用原始影像对评价结果进行验证。试验结果表明,当模型中参数型指数混合熵函数的参数分别为4和1时,该函数比对数混合熵函数更好地统一了模糊性和随机性,熵值范围提高了2.11倍。该模型不确定性评价结果与原始影像3种分类的不确定像元比例相关系数分别为0.60、0.66、0.70,评价结果较为准确。因此,该模型可以在像元尺度上独立于分类方法将地物类别相对复杂的农业遥感影像分类不确定性更为精确地表达出来,为确保农作物种植面积提取、区域产量遥感估测精度提供了有力支撑。

英文摘要:

Uncertainty is the most important factor which affects the quality of remote sensing image classification (RSIC), research on uncertainty in RSIC is a cutting-edge, hot topic in remote sensing application study. Study of RSIC gradually developed from simple qualitative and non-positioning research into specific quantitative and positioning research. At present, a RSIC uncertainty evaluation model based on pixel scale and independent of the classification method should be established. In recent years, some scholars began to use hybrid entropy model to evaluate uncertainty in RSIC. However, these studies did not focus on a particular area and find out a suitable entropy function. How to find out a suitable entropy function which better integrate both fuzziness and randomness and facilitate a wider range of entropy values has always been a difficult point of research. From the discussion above, this paper established a method for evaluating uncertainty in agricultural RSIC based on exponential hybrid entropy in parametric form (EHEP). In this study, firstly, the exponential hybrid entropy function was deduced in parametric form, and EHEP was obtained. EHEP is improvement of hybrid entropy which has the shortcoming of lacking adjustable parameters. After adjusting parameters, entropy function can better integrate fuzziness and randomness and facilitate a wider range of entropy values, so this function is suitable for evaluating RSIC uncertainty. Moreover, by the research on the relationship between the parameters and the entropy function surface, the paper ascertained parameters which are suitable for evaluating uncertainty in farming area RSIC. Secondly, EHEP was used to establish a RSIC uncertainty evaluation model based on pixel scale and independent of the classification method, in order to offer elicitation to simulation of the uncertainty transferred in space model, and to help fill a vacancy in uncertainty evaluation model based on pixel scale and independent of the classification method. Lastly, the E

同期刊论文项目
同项目期刊论文
期刊信息
  • 《农业工程学报》
  • 北大核心期刊(2011版)
  • 主管单位:中国科学技术协会
  • 主办单位:中国农业工程学会
  • 主编:朱明
  • 地址:北京朝阳区麦子店街41号
  • 邮编:100125
  • 邮箱:tcsae@tcsae.org
  • 电话:010-59197076 59197077 59197078
  • 国际标准刊号:ISSN:1002-6819
  • 国内统一刊号:ISSN:11-2047/S
  • 邮发代号:18-57
  • 获奖情况:
  • 百种中国杰出学术期刊,中国精品科技期刊,中国科协精品科技期刊工程项目期刊,RCCSE中国权威学术期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),英国农业与生物科学研究中心文摘,荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),英国食品科技文摘,中国北大核心期刊(2000版)
  • 被引量:93231