比较研究在策略上被进行了因为为 CO2 的综合 nanocrystalline Li2ZrO3 和 Kdoped Li2ZrO3 吸收剂在高温度捕获,包括固态并且液体阶段方法,柠檬酸盐线路,和帮助淀粉的大音阶的第五音胶化方法与 freeze-drying 结合了技术。包括举起率和吸收能力,吸收性质被 thermogravimetric 分析(TGA ) 在不同 CO2 部分压力综合吸收剂调查。nanosized Li2ZrO3 晶体由柠檬酸盐线路展览综合了更快的举起并且一更高,将近, stoichiometric 吸收能力比那些综合了由固态并且液体阶段方法。做 K 进 Li2ZrO3 能显著地改进 CO2 的举起率,特别在低 CO2 部分压力。为做 K 的 Li2ZrO3 的合成,而帮助淀粉的大音阶的第五音胶化方法与 freeze-drying 结合了,柠檬酸盐线路有差的重制度和可伸缩性技术在上面可再现、容易可伸缩,并且因此综合的吸收剂拥有优秀 CO2 俘获性质。
A comparison study has been conducted on the strategies for synthesizing nanocrystalline Li2ZrO3 and K- doped Li2ZrO3 absorbents for CO2 capture at high temperatures, including solid-state and liquid-phase meth- ods, citrate route, and starch-assisted sol-gel method combined with freeze-drying technique. The absorption properties, including uptake rate and absorption capacity, of synthesized absorbents were investigated by thermo- gravimetric analysis (TGA) at different CO2 partial pressures. The nanosized Li2ZrO3 crystals synthesized by the citrate route exhibit a faster uptake and a higher, nearly stoichiometric absorption capacity than those synthesized by the solid-state and liquid-phase methods. The doping of K into Li2ZrO3 can significantly improve the uptake rate of CO2, especially at low CO2 partial pressures. For the synthesis of K-doped Li2ZrO3, the citrate route has poor reproducibility and scalability, whereas the starch-assisted sol-gel method combined with freeze-drying technique is reproducible and easily scaled up, and the thus synthesized absorbents possess excellent CO2 capture properties.