位置:成果数据库 > 期刊 > 期刊详情页
大功率盘形激光焊焊缝背面宽度预测
  • ISSN号:1004-924X
  • 期刊名称:《光学精密工程》
  • 时间:0
  • 分类:TG441.3[金属学及工艺—焊接]
  • 作者机构:广东工业大学机电工程学院,广东广州510006
  • 相关基金:国家自然科学基金资助项目(No.51675104);广东省科技计划基金资助项目(No.2016A010102015);广州市科技计划基金资助项目(No.201510010089)
中文摘要:

提出了通过视觉传感获取焊接过程中的焊接特征信息并利用神经网络模型预测焊缝背面宽度的方法。利用大功率盘形激光器焊接了低碳钢SS400焊件,在焊接过程中改变焊接功率、焊接速度和焊接路径,并利用两台高速摄像机同步获取焊件正面和侧面出现的焊接特征信息。对获取的图像进行色彩空间转换、分层、滤波去噪和空域图像处理,提取飞溅、熔池和金属蒸气等焊接特征信息,观察焊接路径对各个特征的影响。最后,建立了一个三层的LMBP(LevenbergMarquardt Back Propagation)神经网络模型,将提取的特征信息作为输入量,预测焊缝的背面宽度。结果显示:当熔透不稳定或出现未熔透状态时,LMBP神经网络拟合度大于0.83,最大训练误差均值为0.002 8mm,最大实际误差均值为0.225 6mm。试验结果表明所建立的预测模型具有良好的准确性和稳定性。

英文摘要:

A method was proposed to obtain characteristic information in a welding process by visual sensing and to predict the weld width of weldment bottom surface by using a neural network model.A workpiece made from mild steel SS400 was welded by a high power disk laser.In welding processing,the weld conditions were changed,including laser welding power,welding speed and welding route and two high speed cameras were used to capture images containing characteristic information on both top surface and side surface of weldment simultaneously.In order to get a better characteristics extraction,the colour space of a RGB image was changed into NTSC(National Television Standards Committee)colour space,then both RGB image and YIQ image were separated into their colour components,filtered to denoising and processed in space domain.The weld characteristic information was extracted,including spatter,weld pool and metal vapour and the effect of weld route on characteristic information was researched.Finally,a LMBP(Levenberg-Marquardt Back Propagation)neural network model including three layers and one hidden layer was established.The obtained characteristic information was taken as input,and the weld width of weldment bottom surface was predicted.The results show that when the welding penetration is unstable or lack of penetration,the fitting degree of LMBP neural network is greater than 0.83,the maximum training error mean is 0.002 8mm,and maximum actual error mean is 0.225 6mm.It concludes that the prediction model has good accuracy and stability.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《光学精密工程》
  • 北大核心期刊(2011版)
  • 主管单位:中国科学院
  • 主办单位:中国科学院长春光学精密机械与物理研究所 中国仪器仪表学会
  • 主编:曹健林
  • 地址:长春市东南湖大路3888号
  • 邮编:130033
  • 邮箱:gxjmgc@sina.com;gxjmgc@ciomp.ac.cn
  • 电话:0431-86176855 84613409传
  • 国际标准刊号:ISSN:1004-924X
  • 国内统一刊号:ISSN:22-1198/TH
  • 邮发代号:12-166
  • 获奖情况:
  • 三次获得“百种中国杰出学术期刊”,2006年获得中国科协择优支持基金,2007年获“吉林省新闻出版精品期刊奖”,2008年获“中国精品科技期刊”,2012年《光学精密工程》看在的3篇论文获得中国百...,第三届中国出版政府奖提名奖
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版)
  • 被引量:22699