位置:成果数据库 > 期刊 > 期刊详情页
基于多信息字典学习及稀疏表示的SAR目标识别
  • ISSN号:1001-506X
  • 期刊名称:系统工程与电子技术
  • 时间:2014.11
  • 页码:1280-1287
  • 分类:TP95[自动化与计算机技术]
  • 作者机构:[1]西安电子科技大学雷达信号处理国家重点实验室,陕西西安710071
  • 相关基金:国家自然科学基金(61201292,61322103,61372132);全国优秀博士学位论文作者专项资金(FANEDD-201156);国防预研基金;中央高校基本科研业务费专项资金资助课题
  • 相关项目:基于物理模型的极化SAR自动目标识别研究
中文摘要:

为了提高合成孔径雷达(synthetic aperture radar,SAR)图像中目标变体的识别性能,在鉴别字典学习及联合动态稀疏表示模型的基础上,提出一种基于多信息字典学习及稀疏表示的SAR目标识别方法。在训练阶段,采用鉴别字典学习LC-KSVD方法分别对目标图像域幅度信息及目标频域幅度信息进行字典学习。在测试阶段,结合训练阶段学到的2种信息的字典及测试目标的2种信息,采用联合动态稀疏表示模型求解2种信息下的稀疏表示系数。最后,根据2种信息下的重构误差实现对测试目标的识别。使用MSTAR数据集对算法进行验证,结果表明,新方法相对于现有的方法能够达到更好的识别性能。

英文摘要:

To improve the synthetic aperture radar (SAR)target variant recognition performance, on the basis of the discriminative dictionary learning and joint dynamic sparse representation model, a new SAR target recognition method is proposed based on the multi information dictionary learning and sparse representation. In the training stage, the discriminative dictionary learning method label consistent KSVD (LC-KSVD) is used to learn dictionaries for both the image domain amplitude information and the frequency domain amplitude information of the targets. In the test stage, based on the learned dictionaries for the two kinds of information, the test target representation coefficients for the two kinds of information are computed using the joint dynamic sparse representation model. Finally, the test target can be classified according to the representation residual for the two kinds of information. The MSTAR dataset is used to verify the effectiveness of the proposed method. Experimental results show that the proposed method has better recognition performance than some existed methods.

同期刊论文项目
期刊论文 16
同项目期刊论文
期刊信息
  • 《系统工程与电子技术》
  • 北大核心期刊(2011版)
  • 主管单位:中国航天科工集团公司
  • 主办单位:中国航天科工防御技术研究院 中国宇航学会 中国系统工程学会
  • 主编:施荣
  • 地址:北京142信箱32分箱
  • 邮编:100854
  • 邮箱:xtgcydzjs@126.com
  • 电话:010-68388406
  • 国际标准刊号:ISSN:1001-506X
  • 国内统一刊号:ISSN:11-2422/TN
  • 邮发代号:82-269
  • 获奖情况:
  • 全国中文核心期刊,全国优秀科技期刊,中国科技论文统计用刊,中国期刊方阵“双百”期刊
  • 国内外数据库收录:
  • 德国数学文摘,荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:34341