位置:成果数据库 > 期刊 > 期刊详情页
基于概念共现图的多文档自动摘要研究
  • ISSN号:0253-2778
  • 期刊名称:《中国科学技术大学学报》
  • 时间:0
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]中国科学技术大学计算机科学技术系,安徽合肥230027
  • 相关基金:基金项目:国家自然科学基金(60573077)资助.
中文摘要:

以概念统计为基础,以WordNet为语义资源进行语义消歧和概念归并,提出了一种概念共现图模型并把它应用于多文档自动文摘.该模型利用概念间的共现信息构造概念共现图,抽取多文档集合的主题概念,再根据主题概念构建向量空间模型并计算句子的重要性.由于对概念进行了良好的归纳,该模型能够挖掘蕴涵在文档集中的深层次主题.在DUC2005数据集上评测的结果表明,该方法取得的效果令人满意,可用于实际的应用.

英文摘要:

A concept co-occurrence graph model was proposed and applied to automatic multi-document summarization. This model bases itself on the concept counting, disambiguating the different meanings of multi-sense words on the basis of the semantic resource -- WordNet and merging concepts. It constructs concept co-occurrence graphs and extracts subject concepts from the multi-document set by means of the co-occurrence information between concepts. Subsequently, it builds a vector space model and computes sentence importance in accordance with the subject concepts. As a result of generalizing the concepts well, this model is capable of digging out subjects hidden deep in the document set. Results from the DUC2005 evaluation indicate that the model of content co-occurrence graph can be put into practice.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《中国科学技术大学学报》
  • 北大核心期刊(2011版)
  • 主管单位:中国科学院
  • 主办单位:中国科学技术大学
  • 主编:何多慧
  • 地址:安徽省合肥市金寨路96号
  • 邮编:230026
  • 邮箱:JUST@USTC.EDU.CN
  • 电话:0551-63601961 63607694
  • 国际标准刊号:ISSN:0253-2778
  • 国内统一刊号:ISSN:34-1054/N
  • 邮发代号:26-31
  • 获奖情况:
  • 1999年,全国优秀高等学校自然科学学报及教育部优...,2001年,安徽省1999-2001年度优秀科技期刊一等奖,2002年,第三届华东地区优秀期刊奖
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),美国数学评论(网络版),德国数学文摘,荷兰文摘与引文数据库,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:8237