位置:成果数据库 > 期刊 > 期刊详情页
基于出租车轨迹数据的最优路径规划方法
  • ISSN号:1001-9081
  • 期刊名称:《计算机应用》
  • 时间:0
  • 分类:TP393.027[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术] TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]武汉理工大学计算机科学与技术学院,武汉430063, [2]武汉理工大学航运学院,武汉430063
  • 相关基金:国家自然科学基金资助项目(51579202);中国博士后基金资助项目(2015T80848).
中文摘要:

针对传统的路径规划算法并不一定能计算得到现实中最优路径的问题,提出一种融合了出租车驾驶经验并以时间为度量的路径规划算法。该算法的实现是将路径规划这个以计算为中心的技术变为以数据为中心的数据驱动挖掘技术。首先,从大量的出租车轨迹数据中提取真实的载人轨迹数据,并将载人轨迹数据匹配到路网数据中;然后,根据地图匹配结果计算路段的访问频次,选取前Top-k个路段作为热点路段;其次,计算热点路段间行车轨迹的相似度,对轨迹进行聚类分析,在路网的基础上构建该k个路段的热点路段图;最后,使用一种改进的A*算法实现路径规划。实验结果表明,与传统的最短路径规划算法和基于驾驶经验路网分层的路径规划算法相比,所提出的基于热点路段图的路径规划方法有效地缩短规划路径的长度及路径行驶时间,提高路径规划的用时效率。

英文摘要:

Focusing on the issue that the path calculated by traditional path planning algorithm is not necessarily the optimal path in reality, a path planning algorithm which combined the experience of taxi driving and took time as a measure was proposed. The implementation of this algorithm was to transform the path planning technology which took calculation as the center into data-driven mining technology which regarded data as the center. Firstly, the real manned trajectory data were extracted from a large number of taxi trajectory data and matched to the road network data. Then, the access frequency of the road segments were calculated according to the calculation results of map-matching, and Top-k road sections were selected as hot sections; Secondly, the similarity of road tracks between hot sections was calculated, and the trajectories were clustered to build k sections of hot road map based on the road network. Finally, an improved A* algorithm was used to calculate the optimal path. The experimental results show that compared with the traditional shortest path planning algorithm and the path planning algorithm based on hierarchical road network, the path planning method based on hot section map can shorten the length of the planning path and the travel time and improve the time efficiency of path planning.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机应用》
  • 北大核心期刊(2011版)
  • 主管单位:四川省科学技术协会
  • 主办单位:四川省计算机学会中国科学院成都分院
  • 主编:张景中
  • 地址:成都市人民南路四段九号科分院计算所
  • 邮编:610041
  • 邮箱:xzh@joca.cn
  • 电话:028-85224283
  • 国际标准刊号:ISSN:1001-9081
  • 国内统一刊号:ISSN:51-1307/TP
  • 邮发代号:62-110
  • 获奖情况:
  • 全国优秀科技期刊一等奖,国家期刊奖提名奖,中国期刊方阵双奖期刊,中文核心期刊,中国科技核心期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:53679