位置:成果数据库 > 期刊 > 期刊详情页
基于无指导学习的微博评论分析方法
  • ISSN号:1003-0077
  • 期刊名称:《中文信息学报》
  • 时间:0
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:南京大学计算机软件新技术国家重点实验室,江苏南京210023
  • 相关基金:国家自然科学基金(61170181); 江苏省自然科学基金(BK2011192); 国家社会科学基金(11AZD121)
中文摘要:

该文以一种有效的方法寻找出有价值的微博评论,这对于读者更高效地阅读评论,为舆情分析、文本挖掘等任务提供支持,均具有重要的应用价值。针对微博及其评论文本短小、内容发散等特点,该文提出一种基于无指导学习的微博评论分析方法,该方法通过互联网搜索引擎扩展微博文本,基于相关性计算自动构造正负训练用例,生成特定的某条微博评论分类模型,通过该模型对评论的价值性进行评估。实验结果表明,该方法能够比较好地识别出评论的价值。

英文摘要:

The valuable microblog comments can be supplied to the readers, or be provided to some tasks like public opinion analysis and text mining. To detect such valuable comment, this paper presents an unsupervised comments analysis method. Firstly, we use the search engine to expand the microblog text. Secondly, we use the correlation measure to get the most valuable comments and the most invaluable comments, respectively. Finally, we generate a comment classification model to assess the comment value. The experimental results show our method performs well on the task of valuable comments recognition.

同期刊论文项目
期刊论文 17 会议论文 10
同项目期刊论文
期刊信息
  • 《中文信息学报》
  • 北大核心期刊(2011版)
  • 主管单位:中国科学技术协会
  • 主办单位:中国中文信息学会 中国科学院软件研究所
  • 主编:孙茂松
  • 地址:北京海淀中关村南四街4号中科院软件所
  • 邮编:100190
  • 邮箱:jcip@iscas.ac.cn
  • 电话:010-62562916
  • 国际标准刊号:ISSN:1003-0077
  • 国内统一刊号:ISSN:11-2325/N
  • 邮发代号:
  • 获奖情况:
  • 国内外数据库收录:
  • 日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:9136