设Tn(x),Un(x)是Chebyshev多项式,复数d≠0,利用发生函数方法给出∑=nkrkkkUd0(1),∑=nkrkkkTd0(1),∑=nkrkkUk0(1)sinα,∑=nkrkkUk0(1)cosα,∑=nkrkkTk0(1)sinα,∑=nkrkkTk0(1)cosα的计算公式.
Let T n(x),Un(x)be Chebyshev polynomial,complex number d ≠0,gave the calculation formulas of ∑ = n k rk k k Ud 0(1),∑ = n k rk k k Td 0(1)and ∑ = n k r k k Uk 0(1)sinα,∑ = n k r k k Uk 0(1)cosα,∑ = n k r k k Tk 0(1)sinα,∑ = n k r k k Tk 0(1)cosα by method of generating function.