位置:成果数据库 > 期刊 > 期刊详情页
基于粗差判别的参数优化自适应加权最小二乘支持向量机在PX氧化过程参数估计中的应用
  • ISSN号:0438-1157
  • 期刊名称:化工学报
  • 时间:2012.12.20
  • 页码:3943-3950
  • 分类:TP277[自动化与计算机技术—控制科学与工程;自动化与计算机技术—检测技术与自动化装置]
  • 作者机构:[1]华东理工大学,化工过程先进控制和优化技术教育部重点实验室,上海200237, [2]上海交通大学电工与电子技术中心,上海200240, [3]盘锦辽河油田天意石油装备有限公司,辽宁盘锦124010
  • 相关基金:国家自然科学基金面上项目(20876044,61174118);上海市科技攻关项目(10111100103);上海市重点学科建设项~(B504).
  • 相关项目:复杂化工过程资源高效利用的系统优化方法与关键技术
中文摘要:

对乙烯裂解炉建立实时监控模型具有重要的现实意义,而传统的多元统计过程监控方法都是假设过程处于单一工况下,而随着过程参数(进料负荷、产品组分等)的改变,工况也随之改变,传统方法便不再适用。本文针对工业过程中的多工况问题,提出了一种基于自适应模糊聚类的多模型过程监控方法,该方法可以减少监控方法对过程知识的依赖性,并且能够适应实际工业过程的非高斯性和非线性特征。首先对影响工况的过程变量利用自适应模糊聚类进行工况划分,然后对每种工况的建模数据分别利用最大方差展开(MVU)提取低维信息,再用支持向量数据描述(SVDD)建立多模型过程监控模型,最后再利用相应的统计指标进行过程监控。将上述方法应用在乙烯裂解炉上,并与基于高斯混合模型的多PCA方法(GMM-MPCA)进行了比较。仿真实验中,监控对裂解炉运行影响最大的33个变量,根据聚类有效性指标,将数据划分为5类时可以得到最佳的聚类效果。通过实验,将33维建模数据降到20维时误报率最小。仿真结果表明该方法在对非线性和非高斯性过程的监控上,能达到很好的效果,误报率和检测率均优于GMM-MPCA方法。

英文摘要:

Modem manufacturing equipment has the characteristics of large scale, high complexity and multi-variable. It usually runs under closed-loop control. Conducting fault detection and diagnosis of this equipment at early time can reduce downtime, increase process safety and cut manufacturing costs. With the development of computers and intemet, a large amount of process data are collected and stored into the database which can be used to carry out fault detection and diagnosis. Traditional methods for process monitoring usually works under the assumption that the process only has one steady state mode, but when applied to the process with multi-state modes these methods don't have a good monitoring result. In order to solve this problem, this paper proposes a multiple models process monitoring method based on self-adaptive fuzzy c means cluster. It can have a good monitoring result of the process with multiple operation modes and reduce dependence on the process knowledge. First, classify the mode according to the process variables which have influence on the operating mode. Second, use Maximum Variance Unfolding (MVU) to reduce the dimension of each child-model data, and then build the Support Vector Data Description (SVDD) process monitoring model. At last, corresponding monitoring indices are constructed to detect process fault. The proposed method has been applied to the process monitoring of ethylene cracking furnace to show its efficiency. Gaussian Mixture Model-Multiple PCA (GMM-MPCA) method is chosen to be compared with. In the simulation, 33 variables which have main effect on the cracking furnace are chosen to monitor. According to the cluster validity index, the model data are divided into 5 sub-models. When the data's dimensions are reduced to 20, minimum false detection rate can be reached. The simulation result indicates that the proposed method has good monitoring result when applied to the nonlinear and nonGaussian process. The false detection rate and detection rate are all better tha

同期刊论文项目
同项目期刊论文
期刊信息
  • 《化工学报》
  • 中国科技核心期刊
  • 主管单位:中国科学技术协会
  • 主办单位:中国化工学会 化学工业出版社
  • 主编:李静海
  • 地址:北京市东城区青年湖南街13号
  • 邮编:100011
  • 邮箱:hgxb126@126.com
  • 电话:010-64519485
  • 国际标准刊号:ISSN:0438-1157
  • 国内统一刊号:ISSN:11-1946/TQ
  • 邮发代号:2-370
  • 获奖情况:
  • 中国科协优秀期刊二等奖,化工部科技进步二等奖,北京全优期刊奖,中国期刊方阵“双效”期刊,第三届中国出版政府奖
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),荷兰文摘与引文数据库,美国工程索引,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:35185