通过环R上矩阵环M3(R)的特殊子环S3(R)={(α(a) b c 0 β(a) d 0 0 γ(a))|a,b,c,d∈R}给出了一类半交换Armendariz环。利用Reduced环和相容自同态的性质证明了:如果R是Reduced环,α,β,γ是R的相容自同态,那么S3(R)是半交换的Armendariz环。
An example of semicommutative Armendariz ring is given. We prove that if R is a reduced ring and α,β,γ are compatible endomorphisms of R,then the subring S3(R)={(α(a) b c 0 β(a) d 0 0 γ(a))|a,b,c,d∈R} of the matrix ring M3(R) is a semicommutative Armendariz ring.