同时利用纵向动力学模型和加速度偏差坡度估计模型,基于多遗忘因子的递推最小二乘法(RLS),对载货汽车的质量与路面坡度进行了联合估计。在Matlab/Simulink中建立了估计模型,在动力学软件Truck Sim中建立了载货汽车的非线性车辆模型,通过固定坡度路面与正弦扫频路面的动力学仿真对估计方法进行了验证,结果表明,当路面坡度变化不明显时,使用联合坡度估计模型与只采用纵向动力学模型对路面坡度进行估计辨识时两者差异较小;而在正弦扫频路面条件下,联合坡度估计模型能够更好地跟踪路面坡度变化,估计值更精确。
This paper focuses on the issue of mass and grade estimation algorithms for the heavy vehicles using the longitudinal dynamics and acceleration deviation gradient model based on recursive least square(RLS) with multiple forgetting factors algorithm. The proposed parameter estimation model is established based on Matlab/Simulink. A nonlinear heavy vehicle simulation model is established based on TruckSim, and this estimation method is verified by dynamic simulation of fixed gradient road and sine sweep frequency road surface. The results reveal that the road estimation using the longitudinal dynamics and acceleration deviation gradient model can well track the variation of road compared with the scheme with longitudinal dynamics only in the sine sweep gradient condition.