基于多变量幂多项式展开,提出了一种计算带有随机参数的结构失效概率的新方法,随机参数包括材料性能、结构几何特征和静力荷载.首先,将结构响应展开为一个系数未知的多变量幂多项式展开式,然后结合高阶摄动技术和伽辽金投影方法确定多变量幂多项式展开式的待定系数,从而最终获得结构的功能函数.由于得到的功能函数是一种显式表达,可通过蒙特卡洛模拟直接进行结构失效概率的多维积分计算,且只需少量的计算时间.2个数值算例证明了所提出方法的精确性和高效性.将该方法与被广泛应用的一次二阶矩可靠性方法(FORM)和二次二阶矩可靠性方法(SORM)进行了比较,结果表明该方法的计算结果最接近直接蒙特卡洛方法,且比直接蒙特卡洛方法耗时低很多.
A new method for calculating the failure probabilityof structures with random parameters is proposed based onmultivariate power polynomial expansion, in which te uncertain quantities include material properties, structuralgeometric characteristics and static loads. The structuralresponse is first expressed as a multivariable power polynomialexpansion, of which the coefficients ae then determined by utilizing the higher-order perturbation technique and Galerkinprojection scheme. Then, the final performance function ofthe structure is determined. Due to the explicitness of theperformance function, a multifold integral of the structuralfailure probability can be calculated directly by the Monte Carlo simulation, which only requires a smal amount ofcomputation time. Two numerical examples ae presented toillustate te accuracy ad efficiency of te proposed metiod. It is shown that compaed with the widely used first-orderreliability method ( FORM) and second-order reliabilitymethod ( SORM), te results of the proposed method are closer to that of the direct Monte Carlo metiod,and it requires much less computational time.