首先基于扭曲Lebesgue测度对Choquet积分进行推广,给出有界可测函数的Choquet-Lebesgue积分的概念;其次,将单调的连续可微函数的Choquet-Lebesgue积分转化为Lebesgue积分。
In this paper,it firstly generalizes the Choquet integral based on the distorted Lebesgue measure and presents the notion of Choquet-Lebesgue integral for bounded measurable function.Then it turns the Choquet-Lebesgue integrals for monotonic,continuous,derivable functions into Lebesgue integrals.