为实现马铃薯叶片早疫病的快速识别,达到尽早防治的目的,利用高光谱成像系统连续4天采集375~1018nm波段内的健康和染病马铃薯叶片的高光谱数据信息,并用ENVI软件提取感兴趣区域的光谱反射率平均值。分别建立基于全光谱(full spectrum,FS)、连续投影算法(SPA)和载荷系数法(x-LW)提取的特征波长的BP网络和LS-SVM识别模型,其中FS-BP、SPA-BP、x-LW-BP模型中预测集识别率分别为100%、100%、98.33%,LS-SVM模型的预测集识别率均为100%;SPA和x-LW提取的特征波长个数均仅占全波长的1.47%,大大简化了模型,提高了运算速率。实验表明:应用高光谱成像技术可以快速、准确地识别出马铃薯叶片早疫病,且SPA和x-LW可以作为特征波长提取的有效方法,为田间马铃薯早疫病的在线实时检测仪器的开发提供理论依据。