位置:成果数据库 > 期刊 > 期刊详情页
用于解析函数复分析的共轭边界元法
  • ISSN号:1000-0887
  • 期刊名称:《应用数学和力学》
  • 时间:0
  • 分类:O174.5[理学—数学;理学—基础数学] O241.8[理学—计算数学;理学—数学]
  • 作者机构:华中科技大学力学系,武汉430074
  • 相关基金:国家自然科学基金(10972083)
作者: 李国清
中文摘要:

由2个共轭的实调和函数构建1个复解析函数,其复分析在应用数学和力学领域具有重要的作用.提出了一个加权残数方程组,证明了该方程组为2个共轭函数的域内控制方程、边界条件和边界上Cauchy-Riemann(柯西-黎曼)条件的近似解,等效为复解析函数的逼近方程.在离散空间中。由该加权残数方程分别推导出2个位势问题的直接边界积分方程和1个表示Cauchy—Riemann条件的有限差分方程.随后解决了弱奇异线性方程组的求解难题,并提出用Cauchy积分公式求内点值的方法,从而建立了一种用于复分析的常单元共轭边界元法.最后,用3个算例证明了所提出方法适用于域内或域外的幂函数、指数函数或对数函数形式的解析函数,而且其误差与2维位势问题是同等量级的.

英文摘要:

An analytic function is composed of 2 real conjugate harmonic functions, of which the complex analysis plays an important role in the fields of applied mathematics and mechanics. A set of weighted residual equations were proposed and proved to be equivalent to the approximate solution to the original problem involving 2 governing equations in the domain, the boundary condition and the Cauchy-Riemann equation at the boundary. 2 conventional direct boundary integral equations at the boundary collocation points were deduced from 2 of the weighted residual equations, and 1 finite difference equation was deduced from the rest one. The mathematical problem arising from the ill-conditioned linear equations was solved and the Cauchy integral equation was adopted for numerical calculation of the fields at the internal points inside the domain. Finally, the proposed conjugate boundary element method with constant elements was completely established. 3 examples demonstrate that, the proposed method is valid for analytic functions in terms of the power function, the exponential function and the logarithmic function in interior or exterior domains, and the error estimation of the proposed method is at the same order as that of the boundary element method for 2D potential problems.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《应用数学和力学》
  • 中国科技核心期刊
  • 主管单位:重庆交通大学
  • 主办单位:重庆交通大学
  • 主编:钟万勰
  • 地址:重庆南岸区重庆交通大学90信箱
  • 邮编:400074
  • 邮箱:applmathmech@cqjtu.edu.cn
  • 电话:023-62652450
  • 国际标准刊号:ISSN:1000-0887
  • 国内统一刊号:ISSN:50-1060/O3
  • 邮发代号:78-21
  • 获奖情况:
  • 国际工程索引(EI)收录期刊,我国力学类核心期刊,中国期刊方阵“双效”期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国数学评论(网络版),日本日本科学技术振兴机构数据库,美国应用力学评论,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:8965