由2个共轭的实调和函数构建1个复解析函数,其复分析在应用数学和力学领域具有重要的作用.提出了一个加权残数方程组,证明了该方程组为2个共轭函数的域内控制方程、边界条件和边界上Cauchy-Riemann(柯西-黎曼)条件的近似解,等效为复解析函数的逼近方程.在离散空间中。由该加权残数方程分别推导出2个位势问题的直接边界积分方程和1个表示Cauchy—Riemann条件的有限差分方程.随后解决了弱奇异线性方程组的求解难题,并提出用Cauchy积分公式求内点值的方法,从而建立了一种用于复分析的常单元共轭边界元法.最后,用3个算例证明了所提出方法适用于域内或域外的幂函数、指数函数或对数函数形式的解析函数,而且其误差与2维位势问题是同等量级的.
An analytic function is composed of 2 real conjugate harmonic functions, of which the complex analysis plays an important role in the fields of applied mathematics and mechanics. A set of weighted residual equations were proposed and proved to be equivalent to the approximate solution to the original problem involving 2 governing equations in the domain, the boundary condition and the Cauchy-Riemann equation at the boundary. 2 conventional direct boundary integral equations at the boundary collocation points were deduced from 2 of the weighted residual equations, and 1 finite difference equation was deduced from the rest one. The mathematical problem arising from the ill-conditioned linear equations was solved and the Cauchy integral equation was adopted for numerical calculation of the fields at the internal points inside the domain. Finally, the proposed conjugate boundary element method with constant elements was completely established. 3 examples demonstrate that, the proposed method is valid for analytic functions in terms of the power function, the exponential function and the logarithmic function in interior or exterior domains, and the error estimation of the proposed method is at the same order as that of the boundary element method for 2D potential problems.