位置:成果数据库 > 期刊 > 期刊详情页
基于BP神经网络的二元混合液体自燃温度预测
  • ISSN号:1009-6094
  • 期刊名称:《安全与环境学报》
  • 时间:0
  • 分类:X937[环境科学与工程—安全科学]
  • 作者机构:南京工业大学安全科学与工程学院江苏省危险化学品本质安全与控制技术重点实验室,南京210009
  • 相关基金:国家自然科学基金项目(21436006,21576136);江苏省高校自然科学基金重大项目(12KJA620001)
中文摘要:

为了给工业界提供一种快速预测二元混合液体自燃温度的有效途径,将试验所测不同组分及配比的168个二元混合液体的自燃温度作为期望输出,将基于电性拓扑状态指数(ETSI)理论、引入混合ETSI概念而计算出的9种原子类型所对应的混合ETSI作为输入,采用三层BP神经网络技术建立了根据原子类型混合ETSI来预测混合液体自燃温度的BP神经网络模型,并应用改进的Garson算法进行多参数敏感性分析。经模型评价验证及稳定性分析,得到训练集的决定系数R2为0.965,平均绝对误差MAE为11.892 K,测试集的交叉验证系数Q2ext为0.923,平均绝对误差MAE为15.530 K,发现该模型的预测性能优于已有的多元非线性回归(MNR)模型,表明BP神经网络模型具有较好的拟合能力和预测能力,对烷、醇类混合体系自燃温度的预测精度最佳。

英文摘要:

The present paper intends to provide a quick effective way for forecasting auto-ignition temperatures( AIT) of the binary flammable liquid mixtures for the chemical engineering projects,the AIT of 168 binary flammable liquid mixtures composed of different components and volume ratios to be chosen as the expected outputs. It has also aimed at selecting the mixed ETSI values of 9kinds of atom types worked out based on the electro-topological state indices( ETSI) theory as the input variables. It is just for the above said purposes that we have developed a three-layer backward-propagating neural network( BPNN) model for predicting the AIT of binary liquid mixtures according to the atom-type mixed ETSI values and divide the dataset of 168 mixtures randomly into two categories,that is,the training set( 140) and the testing set( 28). At the same time,we have also selected the gradient descent with the momentum and the adaptive learning rate algorithm as the training function to avoid the slow convergence speed and the low learning accuracy. Thus,we have gained the optimal condition of the neural network by adjusting the various parameters via the trial-and-error method,and finding the final optimum structure of BP neural network equal to be 9-8-1. Furthermore,we have also applied the improved Garson algorithm to the multi-parameter sensitivity analysis in assessing the relative and absolute contributions of each atom type through the connection weights of the well trained BPNN model. And,then,we have done the evaluation validation and the stability analysis to validate the model we have proposed,which proves to be obviously superior over the currently existing multiple nonlinear regression( MNR) inductions in terms of the model generalization performance and the prediction accuracy. Along the line,we have identified and determined that the coefficient of the determination( R2) and the mean absolute error( MAE) of the training set should be equal to 0. 965 and 11. 892 K,respectively. And,

同期刊论文项目
同项目期刊论文
期刊信息
  • 《安全与环境学报》
  • 北大核心期刊(2011版)
  • 主管单位:中国兵器工业集团公司
  • 主办单位:北京理工大学 中国环境科学学会 中国职业安全健康协会
  • 主编:冯长根
  • 地址:北京市海淀区中关村南大街5号
  • 邮编:100081
  • 邮箱:aqyhjxb@263.net;aqyhjxb@wuma.com.cn
  • 电话:010-68913997
  • 国际标准刊号:ISSN:1009-6094
  • 国内统一刊号:ISSN:11-4537/X
  • 邮发代号:2-770
  • 获奖情况:
  • 获首届《CAJ-CD》执行优秀期刊奖,中国科技论文统计源期刊
  • 国内外数据库收录:
  • 美国化学文摘(网络版),中国中国科技核心期刊,中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版)
  • 被引量:17182