位置:成果数据库 > 期刊 > 期刊详情页
SCALE-TYPE STABILITY FOR NEURAL NETWORKS WITH UNBOUNDED TIME-VARYING DELAYS
  • ISSN号:2096-0174
  • 期刊名称:《应用数学年刊:英文版》
  • 分类:O1[理学—数学;理学—基础数学]
  • 作者机构:School of Science, Jimei University, Fujian 361021, PR China
  • 相关基金:supported by National Natural Science Foundation of China under Grant 61573005 and 11361010;the Foundation for Young Professors of Jimei University;the Foundation of Fujian Higher Education(JA11154,JA11144)
中文摘要:

This paper studies scale-type stability for neural networks with unbounded time-varying delays and Lipschitz continuous activation functions. Several sufficient conditions for the global exponential stability and global asymptotic stability of such neural networks on time scales are derived. The new results can extend the existing relevant stability results in the previous literatures to cover some general neural networks.

英文摘要:

This paper studies scale-type stability for neural networks with unbounded time-varying delays and Lipschitz continuous activation functions. Several sufficient conditions for the global exponential stability and global asymptotic stability of such neural networks on time scales are derived. The new results can extend the existing relevant stability results in the previous literatures to cover some general neural networks.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《应用数学年刊:英文版》
  • 主管单位:
  • 主办单位:福州大学
  • 主编:
  • 地址:福州大学数学与计算机科学学院
  • 邮编:350002
  • 邮箱:
  • 电话:0591-87893244
  • 国际标准刊号:ISSN:2096-0174
  • 国内统一刊号:ISSN:35-1328/O1
  • 邮发代号:
  • 获奖情况:
  • 国内外数据库收录:
  • 美国数学评论(网络版)
  • 被引量:0