提出了一种基于AdaBoost相关反馈的区域图像检索方法.结合图分割的图像分割算法和多区域匹配方法,利用用户的反馈信息对AdaBoost弱分类器的反复训练,得到一个具有较小错误率的强分类器.将其应用到区域图像检索中从而返回更加精确的查询结果.实验表明(图像数据库大小为10000),基于AdaBoost相关反馈的区域图像检索方法有更好的检索查准率和密集度,优于单一区域的图像比较算法和多区域比较算法.