位置:成果数据库 > 期刊 > 期刊详情页
核判别随机近邻嵌入分析方法
  • ISSN号:1003-9775
  • 期刊名称:《计算机辅助设计与图形学学报》
  • 时间:0
  • 分类:TP301.6[自动化与计算机技术—计算机系统结构;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]浙江工业大学计算机科学与技术学院杭州310023
  • 相关基金:国家“十二五”科技支撑计划(2012BAD10B01);国家自然科学基金(61070043);浙江省自然科学基金(LQ12F03011).
中文摘要:

为了有效地解决非线性特征提取中存在的鉴别效率和样本外问题,最大限度地保持观测信息,并进一步提高相关方法的降维性能,将核学习的方法应用到判别随机近邻嵌入分析方法中,提出一种核判别随机近邻嵌入分析方法.通过引入核函数,将原空间中的样本映射到高维核空间中,构建了用于反映同类和异类数据间相似度的联合概率表达式;在此基础上,引入线性投影矩阵生成对应子空间数据;最后在类内Kullback-Leiber(KL)散度最小和类间KL散度最大的准则下建立目标泛函.该方法突出了异类样本间的特征差异,使样本变得线性可分,从而提高了分类性能.在COIL-20图像库和ORL,Yale经典人脸库上进行实验,验证了文中方法的分类鉴别能力.

英文摘要:

In order to improve the discriminative efficiency and solve the out-of-sample problem which exist in non-linear feature extraction, a kernel-based discriminative stochastic neighbor embedding analysis (KDSNE) method is proposed by imposing the kernel trick, which furthest maintains the observation information and effectively improves the performance of dimensionality reduction. Based on DSNE, the proposed method skillfully introduces kernel function and maps the data into a high- dimensional feature space, then it selects the joint probability to model the pairwise similarities of input samples and uses a linear projection matrix to get low-dimensional representations. Moreover, KDSNE chooses the Kullback-Leiber divergence to quantify the proximity of two probability distributions to build the penalty function. KDSNE outstands the feature differences between inter- class samples and makes the samples linear separable so as to improve the classification performance. Experimental results on COIL-20, ORL and Yale databases show the discriminative performance of the method.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机辅助设计与图形学学报》
  • 北大核心期刊(2011版)
  • 主管单位:中国科学技术协会
  • 主办单位:中国计算机学会
  • 主编:鲍虎军
  • 地址:北京2704信箱
  • 邮编:100190
  • 邮箱:jcad@ict.ac.cn
  • 电话:010-62562491
  • 国际标准刊号:ISSN:1003-9775
  • 国内统一刊号:ISSN:11-2925/TP
  • 邮发代号:82-456
  • 获奖情况:
  • 第三届国家期刊奖提名奖
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,荷兰文摘与引文数据库,美国工程索引,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:24752