位置:成果数据库 > 期刊 > 期刊详情页
基于相关向量机的非线性动态系统辨识
  • ISSN号:1006-9348
  • 期刊名称:《计算机仿真》
  • 时间:0
  • 分类:TP13[自动化与计算机技术—控制科学与工程;自动化与计算机技术—控制理论与控制工程]
  • 作者机构:[1]Department of Automation, School of Electronic, Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China, [2]College of Mechanical and Electronic Engineering, Shanghai Normal University, Shanghai 201814, China
  • 相关基金:This research was partly supported by National Science Foundation of China (No.60572055), Advanced Research Grant of Shanghai Normal University (No.DYL200809) and Guangxi Science Foundation (No.0339068).
中文摘要:

伺服马达由于刺激输入电压,负担转矩和环境操作条件的效果拥有一个强烈非线性的性质。导出能够表示它的动力学和不变的特征的一个传统的数学模型因此是相当困难的。神经基于网络的适应控制策略在这篇论文被建议。在这个方法,二个神经网络分别地为系统鉴定(NNI ) 和控制(NNC ) 被采用了。然后,使用得通常学习专业化被修改了,由在重量期间作为伺服马达的近似产量拿 NNI 产量训练得到敏感信息。而且,选择学习的率的规则根据 Lyapunov 稳定性的分析被给。最后,在一台伺服马达上使用建议控制策略的一个例子被举显示出它的有效性。

英文摘要:

The servo-motor possesses a strongly nonlinear property due to the effect of the stimulating input voltage, load-torque and environmental operating conditions. So it is rather difficult to derive a traditional mathematical model which is capable of expressing both its dynamics and steady-state characteristics. A neural network-based adaptive control strategy is proposed in this paper. In this method, two neural networks have been adopted for system identification (NNI) and control (NNC), respectively. Then, the commonly-used specialized learning has been modified, by taking the NNI output as the approximation output of the servo-motor during the weights training to get sensitivity information. Moreover, the rule for choosing the learning rate is given on the basis of the analysis of Lyapunov stability. Finally, an example of applying the proposed control strategy on a servo-motor is presented to show its effectiveness.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机仿真》
  • 北大核心期刊(2011版)
  • 主管单位:中国航天科技科工集团公司
  • 主办单位:中国航天科工集团公司第十七研究所
  • 主编:吴连伟
  • 地址:北京市海淀区阜成路14号
  • 邮编:100048
  • 邮箱:jsjfz@compusimu;kwcoltd@public.bta.net.cn
  • 电话:010-59475138
  • 国际标准刊号:ISSN:1006-9348
  • 国内统一刊号:ISSN:11-3724/TP
  • 邮发代号:82-773
  • 获奖情况:
  • 国内外数据库收录:
  • 中国中国科技核心期刊,中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版)
  • 被引量:38378