位置:成果数据库 > 期刊 > 期刊详情页
基于T-S模型的模糊神经网络在植物病害图像分割中的应用
  • ISSN号:1007-4333
  • 期刊名称:《中国农业大学学报》
  • 时间:0
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]黑龙江八一农垦大学信息技术学院,黑龙江大庆163319, [2]东北石油大学计算机与信息技术学院,黑龙江大庆163318
  • 相关基金:国家自然科学基金资助项目(60473051); 黑龙江农垦总局重点科技攻关项目(HNKXIV-09-04b)
中文摘要:

针对植物病害图像的病斑区域边缘像素存在模糊性和不确定性,利用T-S模型的模糊规则后件是输入语言变量的函数特性,提出线性清晰化的自适应五层模糊神经网络模型作为植物病害图像模式分类的决策系统,并利用量子遗传算法对模型系统的可调整参数的初始值进行全局优化。试验结果表明:该模型对马铃薯早疫病的彩色图像的有效病班区域分割精确达到100%,学习算法速度快、收敛稳定、鲁棒性较好,避免了传统梯度下降学习算法的局部最小值,并且简单易于实现。

英文摘要:

Aiming at the fuzziness and uncertainty of the edge of the lesion region pixels,this paper proposed a decision system of image segmentation of plant diseases with linear and clear self-adaptive five-layer fuzzy neural network model,and optimized the initial values of adjustable parameters by quantum genetic algorithm,which based on the function characteristic that pieces of fuzzy rules of T-S model is the input language variable.The experimental result showed that T-S model had many advantages including accuracy,convergence,stability,robustness,and easy to implement when implied in color image segmentation of potato early blight,which overcame local minimum of traditional gradient descent method.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《中国农业大学学报》
  • 中国科技核心期刊
  • 主管单位:教育部
  • 主办单位:中国农业大学
  • 主编:李保国
  • 地址:北京海淀区圆明园西路2号
  • 邮编:100094
  • 邮箱:xuebao@cau.edu.cn
  • 电话:010-62732619
  • 国际标准刊号:ISSN:1007-4333
  • 国内统一刊号:ISSN:11-3837/S
  • 邮发代号:
  • 获奖情况:
  • 中国期刊方阵“双效”期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),英国农业与生物科学研究中心文摘,美国剑桥科学文摘,英国动物学记录,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:21575